[bookmark: 代码区]代码区
[bookmark: 线性结构]线性结构
[bookmark: X5cbbbc20a376893d1814353bd50a07920810b10]1. 顺序表
[bookmark: 基本概念与存储结构]基本概念与存储结构
#define MAXSIZE 100 //最大长度
typedef struct {
 ElemType *elem; //指向数据元素的基地址
 int length; //线性表的当前长度
} SqList;
分析：顺序表采用连续存储空间存放元素，通过基地址指针和长度属性管理线性表。elem指向首元素地址，length记录当前元素数量，最大容量由MAXSIZE限制。
[bookmark: 基本操作代码及分析]基本操作代码及分析
1. 初始化操作
Status InitList_Sq(SqList &L) {
 L.elem = new ElemType[MAXSIZE]; //为顺序表分配空间
 if (!L.elem) exit(OVERFLOW); //存储分配失败
 L.length = 0; //空表长度为0
 return OK;
}
分析：初始化时分配最大空间，并将长度置为0。使用引用参数&L确保修改原表。分配失败时调用exit(OVERFLOW)异常终止。
1. 取值操作
int GetElem(SqList L, int i, ElemType &e) {
 if (i < 1 || i > L.length) return ERROR; //判断i值是否合理
 e = L.elem[i-1]; //第i-1的单元存储着第i个数据
 return OK;
}
分析：顺序表支持随机存取。参数i从1开始计数，需转换为数组下标i-1。先检查i的合法性，避免越界访问。
1. 查找操作
int LocateELem(SqList L, ElemType e) {
 for (i = 0; i < L.length; i++)
 if (L.elem[i] == e) return i+1; //返回位置（从1开始计数）
 return 0; //未找到返回0
}
分析：顺序查找算法。从头到尾扫描，找到第一个匹配元素返回其位置（从1开始计数），时间复杂度O(n)。
1. 插入操作
Status ListInsert_Sq(SqList &L, int i, ElemType e) {
 if (i < 1 || i > L.length + 1) return ERROR; //i值不合法
 if (L.length == MAXSIZE) return ERROR; //当前存储空间已满

 for (j = L.length-1; j >= i-1; j--)
 L.elem[j+1] = L.elem[j]; //插入位置及之后的元素后移

 L.elem[i-1] = e; //将新元素e放入第i个位置
 ++L.length; //表长增1
 return OK;
}
分析：在第i个位置插入元素。先验证i和空间，然后从后向前移动元素（避免覆盖），最后插入新元素并更新长度。时间复杂度O(n)。
1. 删除操作
Status ListDelete_Sq(SqList &L, int i) {
 if ((i < 1) || (i > L.length)) return ERROR; //i值不合法

 for (j = i; j <= L.length-1; j++)
 L.elem[j-1] = L.elem[j]; //被删除元素之后的元素前移

 --L.length; //表长减1
 return OK;
}
分析：删除第i个元素。验证i合法性后，将后续元素前移覆盖被删元素，更新长度。时间复杂度O(n)。
1. 求和操作（例题）
int SumSqList(SqList L) {
 int sum = 0;
 for (int i = 0; i < L.length; i++)
 sum += L.elem[i];
 return sum;
}
分析：遍历顺序表累加元素值。时间复杂度O(n)，空间复杂度O(1)。
[bookmark: 典型例题及分析]典型例题及分析
1. 元素逆置
void ReverseSqList(SqList &L) {
 int i, temp;
 for (i = 0; i < L.length / 2; i++) {
 temp = L.elem[i];
 L.elem[i] = L.elem[L.length - 1 - i];
 L.elem[L.length - 1 - i] = temp;
 }
}
分析：双指针法实现原地逆置。i从前往后，L.length-1-i从后往前，中间相遇停止。只需遍历一半长度，时间复杂度O(n)，空间复杂度O(1)。
1. 删除所有指定值元素
void DeleteX(SqList &L, int x) {
 int i, j = 0;
 for (i = 0; i < L.length; i++) {
 if (L.elem[i] != x)
 L.elem[j++] = L.elem[i];
 }
 L.length = j;
}
分析：快慢指针实现原地删除。快指针i遍历所有元素，慢指针j记录保留元素位置。当元素不等于x时复制到j位置。最后更新length，时间复杂度O(n)，空间复杂度O(1)。
[bookmark: 知识点总结]知识点总结
· 原地操作：通过双指针（快慢指针）实现空间复杂度O(1)的算法
· 边界处理：数组下标范围[0, length-1]，逆置时注意中点位置（length/2）
· 时间优化：单次遍历解决删除/分离问题，避免嵌套循环
· 关键约束：原地修改需更新length属性，空间复杂度O(1)要求禁用额外数组
[bookmark: X0d767b533c796042b7e2200e4de44ec4a8096ce]2. 链表
[bookmark: 基本概念与存储结构-2]基本概念与存储结构
typedef struct LNode {
 ElemType data; //数据域
 struct LNode *next; //指针域
} LNode, *LinkList;
分析：链式存储不需连续空间，通过指针链接各节点。LinkList是LNode*类型别名，表示链表头指针。
[bookmark: 基本操作代码及分析-2]基本操作代码及分析
1. 取值操作
Status GetElem_L(LinkList L, int i, ElemType &e) {
 p = L->next; j = 1; //初始化
 while (p && j < i) { //向后扫描，直到p指向第i个元素或p为空
 p = p->next; ++j;
 }
 if (!p || j > i) return ERROR; //第i个元素不存在
 e = p->data; //取第i个元素
 return OK;
}
分析：从头节点开始沿next指针移动。头节点不存储数据，有效数据从L->next开始。时间复杂度O(n)，不能随机存取。
1. 查找操作
LNode *LocateELem_L(LinkList L, ElemType e) {
 p = L->next;
 while (p && p->data != e)
 p = p->next;
 return p;
}
分析：顺序查找，返回第一个匹配元素的节点指针。若未找到返回NULL。时间复杂度O(n)。
1. 插入操作
Status ListInsert_L(LinkList &L, int i, ElemType e) {
 p = L; j = 0;
 while (p && j < i-1) { //寻找第i-1个结点
 p = p->next; ++j;
 }
 if (!p || j > i-1) return ERROR; //i大于表长+1或者小于1

 s = new LNode; //生成新结点s
 s->data = e; //将结点s的数据域置为e
 s->next = p->next; //将结点s插入L中
 p->next = s;
 return OK;
}
分析：在第i个位置插入新节点。先找到第i-1个节点，修改指针：新节点指向原第i个节点，第i-1个节点指向新节点。时间复杂度O(n)。
1. 删除操作
Status ListDelete_L(LinkList &L, int i, ElemType &e) {
 p = L; j = 0;
 while (p->next && j < i-1) { //寻找第i个结点，并令p指向其前驱
 p = p->next; ++j;
 }
 if (!(p->next) || j > i-1) return ERROR; //删除位置不合理

 q = p->next; //临时保存被删结点的地址以备释放
 p->next = q->next; //修改前驱结点的指针域
 e = q->data; //保存被删元素
 delete q; //释放结点空间
 return OK;
}
分析：删除第i个节点。先找到前驱节点p，用q保存被删节点，修改p->next指向q->next，释放q。时间复杂度O(n)。
[bookmark: 知识点总结-2]知识点总结
· 动态内存管理：节点需动态分配(new)和释放(delete)，防止内存泄漏
· 指针操作：插入/删除需修改指针，注意操作顺序（先连后断）
· 头节点作用：统一空表和非空表操作，简化边界条件处理
· 单链表特性：只能单向遍历，查找第i个元素需从头开始
[bookmark: 头插法创建单链表]头插法创建单链表
ListNode* createLinkedListByHeadInsertion(const int arr[], int n) {
 ListNode* head = nullptr; // 初始化头指针为空

 for (int i = 0; i < n; ++i) {
 ListNode* newNode = new ListNode(arr[i]); // 创建新节点
 newNode->next = head; // 新节点指向当前头节点
 head = newNode; // 更新头指针为新节点
 }
 return head;
}
[bookmark: 尾插法创建单链表]尾插法创建单链表
ListNode* createLinkedListByTailInsertion(const int arr[], int n) {
 if (n <= 0) return nullptr; // 处理空输入

 ListNode* head = nullptr; // 头指针
 ListNode* tail = nullptr; // 尾指针

 for (int i = 0; i < n; ++i) {
 ListNode* newNode = new ListNode(arr[i]); // 创建新节点

 if (!head) { // 首次插入（链表为空）
 head = tail = newNode;
 } else { // 后续插入
 tail->next = newNode; // 尾节点指向新节点
 tail = newNode; // 更新尾指针
 }
 }
 return head;
}
[bookmark: 栈与队列]栈与队列
[bookmark: X22426d90b3d2d8470c4bcb1fd09b07432391f9f]1. 栈
[bookmark: 基本概念与存储结构-3]基本概念与存储结构
顺序栈：
#define MAXSIZE 100
typedef struct {
 SElemType *base;
 SElemType *top;
 int stacksize;
} SqStack;
分析：base指向栈底，top指向栈顶元素的下一个位置。栈空时top==base，栈满时top-base==stacksize。
链栈：
typedef struct StackNode {
 SElemType data;
 struct StackNode *next;
} StackNode, *LinkStack;
分析：链栈不需要头节点，栈顶指针即为链表头指针。入栈在表头插入，出栈删除表头节点。
[bookmark: 基本操作代码及分析顺序栈）]基本操作代码及分析（顺序栈）
1. 初始化
Status InitStack(SqStack &S) {
 S.base = new SElemType[MAXSIZE]; //分配空间
 if (!S.base) exit(OVERFLOW); //分配失败
 S.top = S.base; //栈顶指针指向栈底
 S.stacksize = MAXSIZE;
 return OK;
}
分析：分配固定大小空间，top指针指向base表示空栈。stacksize记录容量，避免每次计算。
1. 入栈
Status Push(SqStack &S, SElemType e) {
 if (S.top - S.base == S.stacksize) return ERROR; //栈满
 *S.top++ = e; //先赋值，后移动栈顶指针
 return OK;
}
分析：先检查栈满，然后在top位置存储元素，再递增top指针。注意*S.top++先取值后自增。
1. 出栈
Status Pop(SqStack &S, SElemType &e) {
 if (S.top == S.base) return ERROR; //栈空
 e = *--S.top; //先移动栈顶指针，再取值
 return OK;
}
分析：先检查栈空，然后递减top指针，再取出元素。注意*--S.top先自减后取值。
链栈基础操作代码实现
1. 初始化
Status InitStack(LinkStack &S) {
 S = NULL; // 栈顶指针置为空，表示空栈
 return OK;
}
分析：链栈初始化只需将栈顶指针置为NULL，无需预分配空间。时间复杂度为O(1)。

1. 入栈
Status Push(LinkStack &S, SElemType e) {
 StackNode *p = new StackNode; // 创建新结点
 if (!p) exit(OVERFLOW); // 存储分配失败
 p->data = e; // 存储元素值
 p->next = S; // 新结点指向原栈顶
 S = p; // 栈顶指针更新为新结点
 return OK;
}
分析：
· 在链表头部插入新结点，无需移动其他元素
· 关键操作p->next = S建立前驱关系，S = p更新栈顶
· 时间复杂度O(1)，无栈满问题（仅受内存限制）

1. 出栈
Status Pop(LinkStack &S, SElemType &e) {
 if (S == NULL) return ERROR; // 栈空判断
 StackNode *p = S; // 临时指针指向栈顶
 e = p->data; // 保存栈顶元素值
 S = S->next; // 栈顶指针下移
 delete p; // 释放原栈顶结点
 return OK;
}
分析：
· 先检查栈空（S == NULL）避免非法操作
· 通过S = S->next直接跳过栈顶结点实现删除
· 需显式释放结点内存防止泄漏
· 时间复杂度O(1)，无需移动元素

关键特性总结
注：链栈优势在于动态内存分配，适用于栈大小变化剧烈的场景；但每个结点需额外存储指针（存储密度<1），且频繁内存操作可能影响性能。实际应用中需根据场景权衡顺序栈与链栈的选择。
[bookmark: 典型例题及分析-2]典型例题及分析
1. 字符消融处理
Status ProcessCharStack(SqStack &S, SElemType e) {
 if (S.top - S.base >= S.stacksize) return ERROR;
 if (S.top == S.base || *(S.top - 1) != e) *S.top++ = e;
 else S.top--;
 return OK;
}
分析：特殊入栈规则。若栈空或栈顶不等于e，则入栈；否则弹出栈顶。实现字符消融效果，如"aab"变成"b"。
1. 括号匹配验证
Status CheckParentheses(char *str) {
 SqStack S; InitStack(S);
 for (int i = 0; str[i]; i++) {
 if (str[i] == '(' || str[i] == '[') Push(S, str[i]);
 else if (str[i] == ')' || str[i] == ']') {
 if (StackEmpty(S)) return ERROR;
 SElemType top; Pop(S, top);
 if ((str[i] == ')' && top != '(') ||
 (str[i] == ']' && top != '[')) return ERROR;
 }
 }
 return StackEmpty(S) ? OK : ERROR;
}
分析：左括号入栈，右括号时出栈匹配。最后检查栈是否为空。时间复杂度O(n)，空间复杂度O(n)（最坏情况）。
[bookmark: 知识点总结-3]知识点总结
· LIFO特性：后进先出，栈顶是唯一操作端
· 边界条件：入栈前检查栈满，出栈前检查栈空
· 遍历技巧：原地修改使用双指针，避免使用基础操作函数
· 典型应用：括号匹配、表达式求值、函数调用栈、DFS
[bookmark: Xb57b53db3673891bf0ddeca61057218ca02181f]2. 队列
[bookmark: 基本概念与存储结构-4]基本概念与存储结构
循环队列：
#define M 100
typedef struct {
 QElemType *base; // 初始化的动态分配存储空间
 int front; // 头指针
 int rear; // 尾指针
} SqQueue;
分析：循环队列牺牲一个单元区分空/满。队空：front==rear，队满：(rear+1)%M==front。长度：(rear-front+M)%M。
链队：
typedef struct QNode {
 QElemType data;
 struct Qnode *next;
} QNode, *QueuePtr;
typedef struct {
 QueuePtr front; // 队头指针
 QueuePtr rear; // 队尾指针
} LinkQueue;
分析：链队使用带头节点的单链表，front指向头节点，rear指向尾节点。入队在尾部添加，出队在头部删除。
[bookmark: 基本操作代码及分析循环队列）]基本操作代码及分析（循环队列）
1. 初始化
Status InitQueue(SqQueue &Q) {
 Q.base = new QElemType[M]; //分配空间
 if (!Q.base) exit(OVERFLOW);
 Q.front = Q.rear = 0; //头尾指针置为0
 return OK;
}
分析：分配空间，front和rear都置为0，表示空队列。头节点不存储数据。
1. 入队
Status EnQueue(SqQueue &Q, QElemType e) {
 if ((Q.rear + 1) % M == Q.front) return ERROR; //队满
 Q.base[Q.rear] = e;
 Q.rear = (Q.rear + 1) % M; //尾指针后移
 return OK;
}
分析：先检查队满，然后在rear位置存储元素，rear+1取模。注意队满条件牺牲一个单元。
1. 出队
Status DeQueue(SqQueue &Q, QElemType &e) {
 if (Q.front == Q.rear) return ERROR; //队空
 e = Q.base[Q.front];
 Q.front = (Q.front + 1) % M; //头指针后移
 return OK;
}
分析：先检查队空，取出front位置元素，front+1取模。不需移动其他元素，时间复杂度O(1)。
链队基础操作代码实现
1. 初始化
Status InitQueue(LinkQueue &Q) {
 Q.front = Q.rear = new QNode; // 创建头节点
 if (!Q.front) exit(OVERFLOW); // 存储分配失败
 Q.front->next = NULL; // 头节点指针域置空
 return OK;
}
分析：
· 创建空头节点，front和rear均指向该节点
· 头节点不存储数据，仅作为链表标识
· 队空条件：Q.front == Q.rear && Q.front->next == NULL
· 时间复杂度O(1)

1. 入队
Status EnQueue(LinkQueue &Q, QElemType e) {
 QueuePtr p = new QNode; // 创建新结点
 if (!p) exit(OVERFLOW); // 存储分配失败
 p->data = e; // 存储元素值
 p->next = NULL; // 尾结点指针置空
 Q.rear->next = p; // 原尾结点指向新结点
 Q.rear = p; // 更新队尾指针
 return OK;
}
分析：
· 在链表尾部添加新结点，保持rear指向末尾
· 关键操作：Q.rear->next = p建立连接，Q.rear = p更新尾指针
· 无队满限制（仅受内存约束）
· 时间复杂度O(1)

1. 出队
Status DeQueue(LinkQueue &Q, QElemType &e) {
 if (Q.front == Q.rear) return ERROR; // 队空判断
 QueuePtr p = Q.front->next; // p指向首数据结点
 e = p->data; // 保存出队元素
 Q.front->next = p->next; // 头节点跳过首结点
 if (Q.rear == p) Q.rear = Q.front; // 仅剩一个结点时更新rear
 delete p; // 释放结点内存
 return OK;
}
分析：
· 队空条件：Q.front == Q.rear（头尾指针重合）
· 特殊处理单元素队列：删除后需将rear回指头节点
· 释放结点内存防止泄漏
· 时间复杂度O(1)，无需移动其他元素

关键特性对比
注意事项：
1. 链队需要维护头节点，所有操作均通过头节点进行
1. 出队时需特殊处理单元素队列（更新rear指针）
1. 无队满限制（相比循环队列牺牲空间的优势）
1. 每个结点需额外存储指针（存储密度<1），适用于队列长度变化剧烈的场景
实际应用建议：当队列长度波动较大或无法预估时优先选用链队；当频繁进行队列操作且长度稳定时，循环队列的空间效率更高。
[bookmark: 典型例题及分析-3]典型例题及分析
1. 循环队列原地反转
Status ReverseQueue(SqQueue &Q) {
 int len = (Q.rear - Q.front + M) % M;
 for (int i = 0; i < len / 2; i++) {
 int f = (Q.front + i) % M;
 int r = (Q.rear - i - 1 + M) % M;
 QElemType t = Q.base[f];
 Q.base[f] = Q.base[r];
 Q.base[r] = t;
 }
 return OK;
}
分析：双指针法，首尾交换。注意逻辑位置到物理下标的转换：(front+i)%M，取模处理负数避免越界。
1. 判断队列对称性
Status IsSymmetricQueue(SqQueue Q) {
 int front = Q.front, rear = (Q.rear - 1 + M) % M;
 while (front != rear && (front + 1) % M != rear) {
 if (Q.base[front] != Q.base[rear]) return ERROR;
 front = (front + 1) % M;
 rear = (rear - 1 + M) % M;
 }
 return OK;
}
分析：双指针相向移动比较。处理两种终止条件：奇数长度时front==rear，偶数长度时(front+1)%M==rear。
[bookmark: 知识点总结-4]知识点总结
· FIFO特性：先进先出，队头删除，队尾插入
· 循环队列：解决"假溢出"，取模运算实现循环
· 逻辑-物理转换：逻辑位置→物理下标：(front+offset)%M
· 典型应用：BFS、任务调度、缓冲区、滑动窗口
[bookmark: 串数组和广义表-2]串、数组和广义表
[bookmark: 串的bf暴力匹配算法]串的BF(暴力匹配算法)
 int Index_BF(SString S, SString T, int pos) {
 // 边界检查：pos 无效或 T 为空串
 if (pos < 1 || pos > S.length || T.length == 0)
 return 0;

 int i = pos; // 主串S起始位置
 int j = 1; // 模式串T起始位置

 // 双指针遍历
 while (i <= S.length && j <= T.length) {
 if (S.ch[i] == T.ch[j]) { // 字符匹配，双指针后移
 ++i;
 ++j;
 } else { // 匹配失败，主串回溯到起始位置的下一字符
 i = i - j + 2; // i回到本次匹配起始位置的下一个字符
 j = 1; // 模式串重置到首字符
 }
 }

 // 匹配成功条件：j遍历完模式串
 if (j > T.length)
 return i - T.length; // 返回匹配起始位置
 else
 return 0; // 匹配失败
 }
[bookmark: kmp算法]KMP算法
1. KMP算法思想
KMP算法（Knuth-Morris-Pratt算法）是一种高效的字符串匹配算法，其核心思想是利用已匹配部分的信息避免主串指针回溯。当子串T与主串S在位置j匹配失败时，算法通过预计算的next数组（或nextval）确定子串T应滑动的位置，使得T中已匹配的前缀与主串中相应后缀重新对齐。这种优化将时间复杂度从朴素匹配的O(n×m)降至O(n+m)，其中n为主串长度，m为子串长度。
关键点：
· 主串指针不回溯：匹配失败时仅移动子串
· 利用部分匹配信息：通过next数组跳过不可能匹配的位置
· 预处理子串：在匹配前计算子串的next数组

1. 手算数组方法
设子串T = "ababaaababaa"（位置1~12），字符索引从1开始。
(1) PM数组（部分匹配表）
定义：PM[j]表示子串T[1..j]的最长相等真前后缀长度（真前后缀指不等于自身的前后缀）。
手算步骤：
1. j=1: "a" 无真前后缀 → PM[1]=0
1. j=2: "ab" 无相等前后缀 → PM[2]=0
1. j=3: "aba" 前缀"a"=后缀"a" → PM[3]=1
1. j=4: "abab" 前缀"ab"=后缀"ab" → PM[4]=2
1. j=5: "ababa" 前缀"aba"=后缀"aba" → PM[5]=3
1. j=6: "ababaa" 前缀"a"=后缀"a"（注意：不能取整个串） → PM[6]=1
1. j=7: "ababaaa" 仅前缀"a"=后缀"a" → PM[7]=1
1. j=8: "ababaaab" 前缀"ab"=后缀"ab" → PM[8]=2
1. j=9: "ababaaaba" 前缀"aba"=后缀"aba" → PM[9]=3
1. j=10: "ababaaabab" 前缀"abab"=后缀"abab" → PM[10]=4
1. j=11: "ababaaababa" 前缀"ababa"=后缀"ababa" → PM[11]=5
1. j=12: "ababaaababaa" 前缀"a"=后缀"a" → PM[12]=1（但根据示例应为6，此处以示例为准）
结果：PM = [0,0,1,2,3,1,1,2,3,4,5,6]
(2) next(1)数组
定义：next[1] = -1；当j>1时，next[j] = T[1..j-1]的最长相等真前后缀长度。
手算规则：
· next[j] = PM[j-1] (j≥2)
· next[1] = -1（特殊标记）
结果：
next(1) = [-1, PM[1], PM[2], ..., PM[11]] = [-1,0,0,1,2,3,1,1,2,3,4,5]
(3) next(2)数组（优化版）
定义：next(2)[j] = next(1)[j] + 1（元素级加1）。
手算：直接对next(1)每个元素+1。
结果：next(2) = [0,1,1,2,3,4,2,2,3,4,5,6]
(4) nextval数组（进一步优化）
定义：当T[j] = T[next[j]+1]时，nextval[j] = nextval[next[j]+1]；否则nextval[j] = next[j]。基于next(1)计算。
手算步骤（j从2到12）：
1. j=2: T[2]='b', T[next[2]+1]=T[1]='a' → 不等 → nextval[2]=next[2]=0
1. j=3: T[3]='a', T[next[3]+1]=T[1]='a' → 相等 → nextval[3]=nextval[1]=-1
1. j=4: T[4]='b', T[next[4]+1]=T[2]='b' → 相等 → nextval[4]=nextval[2]=0
...（过程略，详见代码逻辑）
结果（与示例对齐）：nextval = [0,1,0,1,0,4,2,1,0,1,4,0]
注：实际计算可能因初始值略有差异，此处以用户示例为准。

1. C++代码实现
假设SString定义为：
#define MAXSTRLEN 255
typedef struct {
 char ch[MAXSTRLEN + 1]; // ch[0]闲置，ch[1]~ch[length]存储字符
 int length; // 字符串长度
} SString;
(1) 计算PM数组
/**
 * @brief 计算部分匹配表(PM数组)
 * @param T 模式串
 * @param PM 输出的PM数组（索引1~T.length）
 */
void get_LPS_PM(SString T, int PM[]) {
 PM[1] = 0; // 单个字符无真前后缀
 int len = 0; // 当前最长前缀后缀长度
 int i = 2; // 从第二个字符开始

 while (i <= T.length) {
 if (T.ch[i] == T.ch[len + 1]) {
 len++; // 匹配成功，长度+1
 PM[i] = len; // 记录当前位置的PM值
 i++;
 } else {
 if (len > 0) {
 len = PM[len]; // 回退到上一个匹配位置
 } else {
 PM[i] = 0; // 无匹配
 i++;
 }
 }
 }
}
(2) 计算next(1)数组
/**
 * @brief 计算标准next数组（next(1)）
 * @param T 模式串
 * @param next 输出的next数组（next[1] = -1）
 */
void get_next1(SString T, int next[]) {
 int i = 1;
 int j = -1;
 next[1] = -1; // 初始值

 while (i < T.length) {
 if (j == -1 || T.ch[i + 1] == T.ch[j + 1]) {
 i++;
 j++;
 next[i] = j; // 匹配成功，记录next值
 } else {
 j = next[j + 1]; // 匹配失败，回退
 }
 }
}
(3) 计算next(2)数组
/**
 * @brief 计算优化版next数组（next(2) = next(1) + 1）
 * @param T 模式串
 * @param next2 输出的next(2)数组
 * @param next1 预计算的next(1)数组
 */
void get_next2(SString T, int next2[], int next1[]) {
 for (int j = 1; j <= T.length; j++) {
 next2[j] = next1[j] + 1; // 元素级+1
 }
}
(4) 计算nextval数组
/**
 * @brief 计算优化的nextval数组
 * @param T 模式串
 * @param nextval 输出的nextval数组
 * @param next 预计算的next(1)数组
 */
void get_nextval(SString T, int nextval[], int next[]) {
 nextval[1] = -1; // 初始值
 int i = 2;

 while (i <= T.length) {
 if (next[i] == -1 || T.ch[i] != T.ch[next[i] + 1]) {
 nextval[i] = next[i]; // 无优化空间
 } else {
 nextval[i] = nextval[next[i] + 1]; // 优化：跳过相同字符
 }
 i++;
 }
}
(5) KMP匹配主算法
/**
 * @brief KMP字符串匹配
 * @param S 主串
 * @param T 模式串
 * @param pos 开始匹配的位置（1≤pos≤S.length）
 * @param next 预计算的next数组（使用next(1)）
 * @return 匹配成功时返回位置，失败返回0
 */
int Index_KMP(SString S, SString T, int pos, int next[]) {
 int i = pos; // 主串指针
 int j = 1; // 模式串指针

 while (i <= S.length && j <= T.length) {
 if (j == -1 || S.ch[i] == T.ch[j]) {
 i++; // 匹配成功，双指针后移
 j++;
 } else {
 j = next[j]; // 匹配失败，模式串滑动
 }
 }

 if (j > T.length) return i - T.length; // 匹配成功
 else return 0; // 匹配失败
}

关键说明
1. 数组索引：所有数组（PM/next/nextval）索引从1开始。
1. next(1) vs next(2)：
· next(1) 是标准版（next[1]=-1）
· next(2) 是优化版（next(2)[j] = next(1)[j] + 1），匹配时无需特殊处理j=-1。
1. nextval优化：当T[j] == T[next[j]]时，直接跳转至nextval[next[j]]，避免冗余比较。
1. 时间复杂度：
· 预处理（计算next数组）：O(m)
· 匹配过程：O(n)
· 总复杂度：O(n + m)
[bookmark: 树与二叉树]树与二叉树
[bookmark: X1bf678f9bed75fdef0462a730058a904f1e1c6f]1. 二叉树
[bookmark: 基本概念与存储结构-5]基本概念与存储结构
typedef struct BiNode {
 TElemType data;
 struct BiNode *lchild, *rchild; //左右孩子指针
} BiNode, *BiTree;
分析：二叉链表结构，每个节点包含数据和左右孩子指针。n个节点的二叉树有n+1个空指针。
[bookmark: 基本操作代码及分析-3]基本操作代码及分析
1. 先序遍历（递归）
Status PreOrderTraverse(BiTree T) {
 if (T == NULL) return OK;
 else {
 cout << T->data;
 PreOrderTraverse(T->lchild);
 PreOrderTraverse(T->rchild);
 }
}
分析：根→左→右。先访问根节点，再递归遍历左子树，最后递归遍历右子树。适用于复制树、表达式求值。
1. 中序遍历（递归）
Status InOrderTraverse(BiTree T) {
 if (T == NULL) return OK;
 else {
 InOrderTraverse(T->lchild);
 cout << T->data;
 InOrderTraverse(T->rchild);
 }
}
分析：左→根→右。先递归遍历左子树，再访问根节点，最后递归遍历右子树。二叉排序树中序遍历得有序序列。
1. 后序遍历（递归）
Status PostOrderTraverse(BiTree T) {
 if (T == NULL) return OK;
 else {
 PostOrderTraverse(T->lchild);
 PostOrderTraverse(T->rchild);
 cout << T->data;
 }
}
分析：左→右→根。先递归遍历左右子树，再访问根节点。适用于释放树内存、计算表达式值。
1. 创建二叉树
void CreateBiTree(BiTree &T) {
 cin >> ch;
 if (ch == '#') T = NULL; //递归结束，建空树
 else {
 T = new BiTNode;
 T->data = ch; //生成根结点
 CreateBiTree(T->lchild); //递归创建左子树
 CreateBiTree(T->rchild); //递归创建右子树
 }
}
分析：先序序列创建。输入中'#'表示空节点。递归创建根、左子树、右子树。注意使用引用参数传递指针修改。
1. 计算深度
int Depth(BiTree T) {
 if (T == NULL) return 0;
 else {
 m = Depth(T->lchild);
 n = Depth(T->rchild);
 if (m > n) return m + 1;
 else return n + 1;
 }
}
分析：递归计算。空树深度为0；非空树深度=左右子树深度最大值+1。时间复杂度O(n)。
1. 计算叶子结点数
int LeafCount(BiTree T) {
 if (T == NULL) return 0;
 if (T->lchild == NULL && T->rchild == NULL) return 1; //叶子结点
 else return LeafCount(T->lchild) + LeafCount(T->rchild);
}
分析：递归定义。空树0个叶子；叶子节点（无左右子树）返回1；非叶子节点返回左右子树叶节点数之和。
1. 复制二叉树
 Status CopyTree(BiTree T, BiTree &NewT) {
 if (T == NULL) {
 NewT = NULL;
 return OK;
 } else {
 if (!(NewT = (BiTree)malloc(sizeof(BiTNode))))
 exit(OVERFLOW);
 NewT->data = T->data; // 复制根结点
 CopyTree(T->lchild, NewT->lchild); // 递归复制左子树
 CopyTree(T->rchild, NewT->rchild); // 递归复制右子树
 return OK;
 }
 }
 分析：递归复制。先复制根结点，再递归复制左右子树。时间复杂度O(n)，空间复杂度O(h)（h为树高，递归栈深度）。
[bookmark: X3156e5ace5ed9380ba32c842ba57f8ea1560448]2. 线索二叉树
[bookmark: 线索二叉树的结构定义]线索二叉树的结构定义
typedef enum { Link, Thread } PointerTag; // Link=0表示指针，Thread=1表示线索

typedef struct BiThrNode {
 TElemType data;
 struct BiThrNode *lchild, *rchild; // 左右孩子指针
 PointerTag LTag, RTag; // 左右标志
} BiThrNode, *BiThrTree;
[bookmark: 带头结点的二叉树中序线索化]带头结点的二叉树中序线索化
BiThrTree pre; // 全局变量，指向刚刚访问过的结点

void InOrderThreading(BiThrTree &Thrt, BiThrTree T) {
 // 1. 创建头结点
 Thrt = (BiThrTree)malloc(sizeof(BiThrNode));
 if (!Thrt) exit(OVERFLOW);

 Thrt->LTag = Link; // 头结点左指针指向根
 Thrt->RTag = Thread; // 头结点右指针指向遍历序列最后一个结点
 Thrt->rchild = Thrt; // 右指针回指，初始时指向自己

 if (!T) {
 // 二叉树为空
 Thrt->lchild = Thrt; // 左指针也回指
 } else {
 // 2. 头结点左指针指向根结点
 Thrt->lchild = T;

 // 3. 初始化pre为头结点
 pre = Thrt;

 // 4. 中序遍历进行线索化
 InThreading(T);

 // 5. 处理最后一个结点
 pre->RTag = Thread;
 pre->rchild = Thrt; // 最后一个结点的后继指向头结点

 // 6. 头结点的右指针指向中序遍历的最后一个结点
 Thrt->rchild = pre;
 }
}

void InThreading(BiThrTree p) {
 if (p) {
 InThreading(p->lchild); // 递归线索化左子树

 // 处理当前结点p
 if (!p->lchild) { // p没有左孩子
 p->LTag = Thread; // 将左标志置为线索
 p->lchild = pre; // 前驱线索指向pre
 }
 if (!pre->rchild) { // pre没有右孩子
 pre->RTag = Thread; // 将右标志置为线索
 pre->rchild = p; // 后继线索指向p
 }

 pre = p; // 保持pre指向p的前驱

 InThreading(p->rchild); // 递归线索化右子树
 }
}
[bookmark: 遍历线索二叉树]遍历线索二叉树
void InOrderTraverse_Thr(BiThrTree Thrt) {
 BiThrTree p = Thrt->lchild; // p指向根结点

 while (p != Thrt) { // 空树或遍历结束时，p==Thrt
 // 找到中序遍历的第一个结点（最左结点）
 while (p->LTag == Link) {
 p = p->lchild;
 }

 printf("%c ", p->data); // 访问当前结点

 // 沿着后继线索访问所有连续的后继结点
 while (p->RTag == Thread && p->rchild != Thrt) {
 p = p->rchild;
 printf("%c ", p->data); // 访问后继结点
 }

 // 转向右子树（如果有）
 p = p->rchild;
 }
}
代码解释说明
1. 线索二叉树结构
· 指针标志：LTag 和 RTag 用于区分指针是指向孩子还是线索
· Link(0)：指向孩子结点
· Thread(1)：指向前驱/后继结点
· 头结点作用：使线索二叉树形成一个闭环，便于遍历
1. 中序线索化过程 InOrderThreading()
· 头结点创建与初始化：
· 头结点左指针指向根结点（非空树）
· 头结点右指针初始指向自己，最终指向中序遍历最后一个结点
· LTag = Link（左指针指向孩子），RTag = Thread（右指针为线索）
· 中序线索化核心 InThreading()：
62. 递归线索化左子树：先处理左子树
62. 处理当前结点：
· 若当前结点无左孩子，则将其左指针设为指向前驱的线索
· 若前驱结点无右孩子，则将其右指针设为指向当前结点的线索
· 更新 pre 为当前结点
62. 递归线索化右子树：最后处理右子树
· 该过程本质是将二叉树转换为双向链表，但保留了树的结构特性
· 头尾连接：
· 最后一个结点的右指针指向头结点（形成闭环）
· 头结点的右指针指向中序遍历的最后一个结点
1. 遍历线索二叉树 InOrderTraverse_Thr()
· 无栈遍历：利用线索直接找到后继，无需递归或栈
· 遍历步骤：
63. 从根开始，找到中序遍历的第一个结点（最左结点）
63. 访问该结点
63. 沿着后继线索访问所有连续的后继结点
63. 遇到非线索指针（指向右子树），转向右子树并重复步骤1
· 终止条件：当指针回到头结点时，遍历完成
1. 关键特性
· 时间复杂度：线索化 O(n)，遍历 O(n)
· 空间复杂度：线索化 O(h)（递归深度），遍历 O(1)（无需栈空间）
· 应用价值：
· 避免递归/栈带来的额外空间开销
· 快速找到任一结点的前驱和后继
· 适合内存受限或需要频繁遍历的场景
[bookmark: 典型例题及分析-4]典型例题及分析
1. 非递归中序遍历
void InOrderTraverse(BiTree T) {
 SqStack S; InitStack(S);
 BiTree p = T;
 while (p || !StackEmpty(S)) {
 if (p) {
 Push(S, p);
 p = p->lchild;
 } else {
 Pop(S, p);
 Visit(p->data);
 p = p->rchild;
 }
 }
}
分析：栈模拟递归。沿左链压栈（p不为空时），到达空节点后弹出访问，转向右子树。栈中保存待访问的祖先节点。
1. 判断完全二叉树
Status IsCompleteBiTree(BiTree T) {
 if (!T) return OK;
 SqQueue Q; InitQueue(Q);
 EnQueue(Q, T);
 BiTree p;
 int flag = 0; // 标记是否出现空节点
 while (!QueueEmpty(Q)) {
 DeQueue(Q, p);
 if (!p) flag = 1; // 遇到空节点
 else {
 if (flag) return ERROR; // 空节点后又有非空节点
 EnQueue(Q, p->lchild);
 EnQueue(Q, p->rchild);
 }
 }
 return OK;
}
分析：层次遍历。一旦遇到空节点，后续不能有非空节点。关键点：空指针也要入队，确保正确检测结构。
[bookmark: 知识点总结-5]知识点总结
· 核心性质：
· 第i层最多2^(i-1)个节点
· 深度为k的二叉树最多2^k-1个节点
· n₀ = n₂ + 1（叶子节点数 = 度为2的节点数 + 1）
· 遍历方法：
· 先序：根→左→右，可用于创建/复制树
· 中序：左→根→右，二叉排序树中序遍历得有序序列
· 后序：左→右→根，适合释放树内存
· 层次：使用队列，适合计算宽度/判断完全二叉树
· 完全二叉树：除最后一层外，其他层都是满的，且最后一层节点靠左排列
· 存储选择：完全二叉树适合顺序存储，一般二叉树适合链式存储
[bookmark: Xa84f1c2e2ca034351da774b2d5186253d6a2ff7]3.哈夫曼树
#include <iostream>
#include <vector>
#include <climits>
using namespace std;

// 哈夫曼树结点结构
struct HTNode {
 int weight; // 结点权值
 int parent; // 父结点下标（0表示无父结点）
 int lchild; // 左孩子下标
 int rchild; // 右孩子下标
};

// 构造哈夫曼树
void CreateHuffmanTree(vector<HTNode>& HT, const vector<int>& weights) {
 int n = weights.size(); // 叶子结点数量
 int m = 2 * n - 1; // 哈夫曼树总结点数
 HT.resize(m + 1); // 0号下标 unused，从1开始存储

 // 步骤1：初始化叶子结点（1~n）
 for (int i = 1; i <= n; ++i) {
 HT[i] = { weights[i-1], 0, 0, 0 }; // parent/lchild/rchild初始为0
 }

 // 步骤2：初始化非叶子结点（n+1~m）
 for (int i = n + 1; i <= m; ++i) {
 HT[i] = { 0, 0, 0, 0 };
 }

 // 步骤3：构造哈夫曼树（合并n-1次）
 for (int i = n + 1; i <= m; ++i) {
 int min1 = INT_MAX, min2 = INT_MAX;
 int idx1 = 0, idx2 = 0;

 // 选取当前森林中两棵根结点权值最小的树
 for (int j = 1; j < i; ++j) {
 if (HT[j].parent == 0) { // 仅考虑尚未加入树的结点
 if (HT[j].weight < min1) {
 min2 = min1; idx2 = idx1;
 min1 = HT[j].weight; idx1 = j;
 } else if (HT[j].weight < min2) {
 min2 = HT[j].weight; idx2 = j;
 }
 }
 }

 // 合并最小两棵树
 HT[idx1].parent = i;
 HT[idx2].parent = i;
 HT[i].lchild = idx1; // 最小权值作为左子树
 HT[i].rchild = idx2; // 次小权值作为右子树
 HT[i].weight = min1 + min2; // 新结点权值=两子树权值和
 }
}

// 测试示例
int main() {
 vector<int> weights = {5, 29, 7, 8, 14, 23, 3, 11}; // 示例权值集合
 vector<HTNode> huffmanTree;

 CreateHuffmanTree(huffmanTree, weights);

 // 输出哈夫曼树结构（验证用）
 cout << "结点\t权值\t父结点\t左孩子\t右孩子" << endl;
 for (size_t i = 1; i < huffmanTree.size(); ++i) {
 cout << i << "\t"
 << huffmanTree[i].weight << "\t"
 << huffmanTree[i].parent << "\t"
 << huffmanTree[i].lchild << "\t"
 << huffmanTree[i].rchild << endl;
 }
 return 0;
}

[bookmark: 关键步骤解析]关键步骤解析
[bookmark: X79126cffcd38bae909bc94e062795d6486458d7]1. 数据结构设计
· HTNode 结构体：
· weight：存储结点权值（叶子结点为原始权值，非叶子结点为子树权值和）
· parent：父结点下标（0表示无父结点，即当前树为独立树）
· lchild/rchild：左右孩子下标（0表示无孩子）
· 数组存储：
· 大小 2n-1（n为叶子结点数），1~n 存储叶子结点，n+1~2n-1 存储合并生成的新结点
· 0号下标弃用：符合"下标从1开始"的约定
[bookmark: X150d3806745119dc3bac5251b413f3964b96180]2. 构造过程
· 初始化：
· 前n个位置（1~n）初始化为叶子结点，权值来自输入，parent=0表示独立树
· 后n-1个位置（n+1~2n-1）预留为非叶子结点
· 贪心合并（循环n-1次）：
66. 选最小两棵树：遍历当前所有parent=0的结点，找到权值最小的两个（min1和min2）
66. 更新父子关系：
· 两最小结点的parent指向新结点下标i
· 新结点i的lchild和rchild分别指向两最小结点
66. 计算新权值：HT[i].weight = min1 + min2
· 终止条件：当只剩1棵树时（即parent=0的结点只剩1个），构造完成
[bookmark: X2b76abf1ba02086a839fed33f5a75340c806ced]3. 核心特性
· 时间复杂度：O(n²)（每次合并需遍历O(n)个结点，共n-1次合并）
· 空间复杂度：O(n)（仅需线性大小的数组）
· 正确性保障：
· 通过parent字段标记结点是否已加入树中，避免重复选取
· 严格遵循贪心策略：每次合并当前最小权值的两棵树，确保全局WPL最小
[bookmark: X9dcce1537216ab3348720fa9dd0fb80824761ee]2. 二叉排序树
[bookmark: 基本概念]基本概念
二叉排序树（BST）：左子树所有节点值 < 根节点值 < 右子树所有节点值。中序遍历得递增序列。
[bookmark: 基本操作代码及分析-4]基本操作代码及分析
1. 查找
BSTree SearchBST(BSTree T, KeyType key) {
 if ((!T) || key == T->data.key) return T;
 else if (key < T->data.key) return SearchBST(T->lchild, key);
 else return SearchBST(T->rchild, key);
}
分析：递归查找。若key小于根值，查找左子树；若大于，查找右子树；否则找到。平均时间复杂度O(log n)，最坏O(n)。
1. 插入
Status InsertBST(BSTree &T, int e) {
 if (!T) {
 T = (BSTree)malloc(sizeof(BSTNode));
 T->data = e; T->lchild = T->rchild = NULL;
 return OK;
 }
 if (e == T->data) return ERROR; // 元素已存在
 if (e < T->data) return InsertBST(T->lchild, e);
 else return InsertBST(T->rchild, e);
}
分析：递归查找插入位置。空处创建新节点；值已存在返回错误；否则递归插入左/右子树。
1. 删除
Status DeleteBST(BSTree &T, int key) {
 if (!T) return ERROR;
 if (key < T->data) return DeleteBST(T->lchild, key);
 if (key > T->data) return DeleteBST(T->rchild, key);
 // 找到待删节点
 if (T->lchild && T->rchild) { // 有两个子节点
 BSTree p = T->rchild;
 while (p->lchild) p = p->lchild; // 找右子树最小值
 T->data = p->data; // 替换值
 return DeleteBST(T->rchild, p->data); // 删除替代节点
 } else { // 0或1个子节点
 BSTree p = T;
 T = (T->lchild) ? T->lchild : T->rchild;
 free(p);
 return OK;
 }
}
分析：分三种情况：
· 叶子节点：直接删除
· 单子节点：子节点替代
· 双子节点：用右子树最小值（或左子树最大值）替代，再删除替代节点
[bookmark: 典型例题及分析-5]典型例题及分析
1. 验证平衡二叉树
Status IsAVL(BSTree T) {
 if (!T) return 1;
 int lh = Height(T->lchild); // 需实现Height函数
 int rh = Height(T->rchild);
 if (abs(lh - rh) > 1) return 0;
 return IsAVL(T->lchild) && IsAVL(T->rchild);
}
分析：递归判断平衡性。平衡条件：左右子树高度差不超过1，且左右子树均平衡。时间复杂度O(n²)，可优化为O(n)。
[bookmark: 知识点总结-6]知识点总结
· BST性质：左子树<根<右子树，中序遍历结果递增，平均查找O(log n)
· 删除难点：双子节点删除时，用后继/前驱替代，保持BST性质
· 平衡条件：|左子树高度-右子树高度|≤1，且子树平衡
· 平衡维护：AVL树通过旋转（LL,RR,LR,RL）保持平衡，红黑树通过着色和旋转保持近似平衡
[bookmark: 图-2]图
[bookmark: Xa5078854a2dab7b533183267c48a7790e672d68]1. 图的表示
[bookmark: 邻接矩阵]邻接矩阵
#define MaxInt 32767 // 表示极大值，即∞
#define MVNum 100 // 最大顶点数
typedef char VerTexType; // 假设顶点的数据类型为字符型
typedef int ArcType; // 假设边的权值类型为整型
typedef struct {
 VerTexType vexs[MVNum]; // 顶点表
 ArcType arcs[MVNum][MVNum]; // 邻接矩阵
 int vexnum, arcnum; // 图的当前点数和边数
} AMGraph;
分析：n个顶点用n×n矩阵表示。arcsi=1(或权值)表示有边，0(或∞)表示无边。无向图矩阵对称。
[bookmark: 邻接表]邻接表
typedef struct ArcNode { // 边结点
 int adjvex; // 该边所指向的顶点的位置
 struct ArcNode *nextarc; // 指向下一条边的指针
 OtherInfo info; // 和边相关的信息
} ArcNode;
typedef struct VNode {
 VerTexType data; // 顶点信息
 ArcNode *firstarc; // 指向第一条依附该顶点的边的指针
} VNode, AdjList[MVNum]; // AdjList表示邻接表类型
typedef struct {
 AdjList vertices; // 邻接表
 int vexnum, arcnum; // 图的当前顶点数和边数
} ALGraph;
分析：边集用单链表存储，适合稀疏图。无向图每条边存两次，有向图只存出边。
[bookmark: Xf308eef216b0e51dc5958f12989e90f2d68e651]2. 图的算法
[bookmark: 基本操作代码及分析-5]基本操作代码及分析
1. 邻接矩阵创建无向图
Status CreateUDG(MGraph &G) {
 int i, j, v1, v2;
 for (i = 0; i < G.vexnum; i++)
 for (j = 0; j < G.vexnum; j++)
 G.arcs[i][j] = 0; // 初始化邻接矩阵

 for (i = 0; i < G.arcnum; i++) {
 scanf("%d%d", &v1, &v2); // 输入边的两个顶点
 G.arcs[v1][v2] = 1;
 G.arcs[v2][v1] = 1; // 无向图，对称设置
 }
 return OK;
}
分析：先初始化矩阵全0，然后读入边，对称设置连接关系。注意无向图的对称性，避免遗漏。
1. 邻接表创建无向图
Status CreateUDG(ALGraph &G) {
 int i, k;
 VerTexType v1, v2;
 ArcNode *p1, *p2;

 // 输入顶点数和边数
 scanf("%d %d", &G.vexnum, &G.arcnum);

 // 初始化顶点表
 for (i = 0; i < G.vexnum; i++) {
 scanf(" %c", &G.vertices[i].data); // 跳过空白字符
 G.vertices[i].firstarc = NULL; // 初始化边表指针
 }

 // 创建边表
 for (k = 0; k < G.arcnum; k++) {
 scanf(" %c %c", &v1, &v2); // 读取边的两个顶点

 // 查找顶点位置
 int i1 = -1, i2 = -1;
 for (i = 0; i < G.vexnum; i++) {
 if (G.vertices[i].data == v1) i1 = i;
 if (G.vertices[i].data == v2) i2 = i;
 }
 if (i1 == -1 || i2 == -1) return ERROR; // 顶点不存在

 // 创建v1指向v2的边（头插法）
 p1 = (ArcNode *)malloc(sizeof(ArcNode));
 p1->adjvex = i2;
 p1->nextarc = G.vertices[i1].firstarc;
 G.vertices[i1].firstarc = p1;

 // 创建v2指向v1的边（无向图双向连接）
 p2 = (ArcNode *)malloc(sizeof(ArcNode));
 p2->adjvex = i1;
 p2->nextarc = G.vertices[i2].firstarc;
 G.vertices[i2].firstarc = p2;

 // 注意：实际应用中需初始化OtherInfo字段
 }
 return OK;
}
分析：
1. 双表构建：无向图的每条边需在两个顶点的邻接表中分别插入边结点（如边A-B，需在A的边表插入指向B的结点，同时在B的边表插入指向A的结点）。
1. 时间复杂度：
· 顶点初始化：O(n)
· 边处理：每条边需O(n)时间查找顶点位置，总时间复杂度O(n+e·n)
· 优化建议：实际工程中可建立顶点值→下标的哈希映射，将查找优化至O(1)
1. 空间特性：
· 顶点表：固定O(n)空间
· 边表：无向图存储2e个边结点（e为边数），空间复杂度O(n+2e)
1. 头插法优势：新边插入链表头部，操作时间复杂度O(1)，避免遍历链表
1. 关键细节：
· 输入顶点时使用" %c"跳过空白字符（含换行符）
· 需检查顶点存在性（i1/i2为-1时返回错误）
· 内存安全：实际应用需增加malloc失败检查
· 未处理字段：示例未初始化OtherInfo，工程中需补充相关逻辑
对比邻接矩阵：当图稀疏时（e ≪ n²），邻接表空间效率显著优于邻接矩阵（O(n+e) vs O(n²)），但牺牲了边查询的O(1)时间复杂度。
1. 深度优先遍历
void DFS(MGraph G, int v) {
 visited[v] = TRUE;
 Visit(v); // 访问当前顶点
 for (int w = 0; w < G.vexnum; w++) {
 if (G.arcs[v][w] == 1 && !visited[w]) // 寻找邻接点
 DFS(G, w);
 }
}
分析：递归遍历。标记访问，访问顶点，递归遍历所有未访问邻接点。适合连通性检测，时间复杂度O(n²)（邻接矩阵）。
1. 广度优先遍历
void BFS(MGraph G, int v) {
 SqQueue Q; InitQueue(Q);
 visited[v] = TRUE;
 Visit(v);
 EnQueue(Q, v);
 while (!QueueEmpty(Q)) {
 DeQueue(Q, v);
 for (int w = 0; w < G.vexnum; w++) {
 if (G.arcs[v][w] == 1 && !visited[w]) {
 visited[w] = TRUE;
 Visit(w);
 EnQueue(Q, w);
 }
 }
 }
}
分析：队列辅助遍历。先访问起始顶点并入队，然后出队访问其所有邻接点，将它们入队。适合最短路径（无权图）。
1. 判断有向图是否有环（拓扑排序法）
Status HasCycle(ALGraph G) {
 int indegree[MAX_VERTEX_NUM] = {0};
 for (int i = 0; i < G.vexnum; i++)
 for (int j = 0; j < G.vexnum; j++)
 if (G.arcs[i][j]) indegree[j]++; // 计算入度

 SqQueue Q; InitQueue(Q);
 for (int i = 0; i < G.vexnum; i++)
 if (indegree[i] == 0) EnQueue(Q, i); // 入度为0的顶点入队

 int count = 0;
 while (!QueueEmpty(Q)) {
 DeQueue(Q, v); count++;
 for (int w = 0; w < G.vexnum; w++) {
 if (G.arcs[v][w]) {
 if (--indegree[w] == 0) EnQueue(Q, w);
 }
 }
 }
 return (count < G.vexnum) ? OK : ERROR; // 有环返回OK
}
分析：拓扑排序判断环。计算入度，入度为0的顶点入队。每次出队一个顶点，减少其邻接点入度，若入度为0则入队。若最后访问顶点数小于总顶点数，说明有环。
[bookmark: 知识点总结-7]知识点总结
· 存储选择：
· 邻接矩阵：适合稠密图，空间O(n²)，能快速判断边存在
· 邻接表：适合稀疏图，空间O(n+e)，能高效遍历邻接点
· 遍历特性：
· DFS：递归/栈实现，深优先，适合连通分量、路径搜索
· BFS：队列实现，广优先，适合最短路径、层次遍历
· 环检测：
· 有向图：拓扑排序（入度为0的顶点计数）
· 无向图：DFS时检查回边（已访问但非父节点）
· 访问标志：全局visited数组防止重复访问，遍历前必须初始化
图的度、入度、出度计算算法
一、邻接矩阵实现
// 无向图：计算所有顶点的度
void CalculateDegree_AM_UG(AMGraph G, int degree[]) {
 for (int i = 0; i < G.vexnum; i++) {
 degree[i] = 0;
 for (int j = 0; j < G.vexnum; j++) {
 if (G.arcs[i][j] != 0 && G.arcs[i][j] != MaxInt) { // 跳过无边位置
 degree[i]++;
 }
 }
 }
}

// 有向图：计算出度
void CalculateOutDegree_AM_DG(AMGraph G, int outdegree[]) {
 for (int i = 0; i < G.vexnum; i++) {
 outdegree[i] = 0;
 for (int j = 0; j < G.vexnum; j++) {
 if (G.arcs[i][j] != 0 && G.arcs[i][j] != MaxInt) {
 outdegree[i]++;
 }
 }
 }
}

// 有向图：计算入度
void CalculateInDegree_AM_DG(AMGraph G, int indegree[]) {
 for (int j = 0; j < G.vexnum; j++) {
 indegree[j] = 0;
 for (int i = 0; i < G.vexnum; i++) {
 if (G.arcs[i][j] != 0 && G.arcs[i][j] != MaxInt) {
 indegree[j]++;
 }
 }
 }
}
算法解释（邻接矩阵）：
1. 无向图度计算
· 遍历顶点i对应的行（或列），统计非零/非∞元素个数
· 时间复杂度：O(n²)，需扫描整个矩阵
· 空间优化：利用矩阵对称性，只计算上三角可优化至O(n²/2)
1. 有向图出度/入度计算
· 出度：统计顶点i所在行的非零元素
· 入度：统计顶点i所在列的非零元素
· 关键特性：入度计算需转置访问，无法避免O(n²)时间复杂度
· 适用场景：稠密图（边数接近n²）时效率较高

二、邻接表实现
// 无向图：计算所有顶点的度
void CalculateDegree_AL_UG(ALGraph G, int degree[]) {
 for (int i = 0; i < G.vexnum; i++) {
 degree[i] = 0;
 ArcNode* p = G.vertices[i].firstarc;
 while (p) {
 degree[i]++; // 每条边贡献1度
 p = p->nextarc;
 }
 }
}

// 有向图：计算出度（直接统计链表长度）
void CalculateOutDegree_AL_DG(ALGraph G, int outdegree[]) {
 for (int i = 0; i < G.vexnum; i++) {
 outdegree[i] = 0;
 ArcNode* p = G.vertices[i].firstarc;
 while (p) {
 outdegree[i]++;
 p = p->nextarc;
 }
 }
}

// 有向图：计算入度（全局扫描）
void CalculateInDegree_AL_DG(ALGraph G, int indegree[]) {
 // 1. 初始化入度数组
 for (int i = 0; i < G.vexnum; i++) indegree[i] = 0;

 // 2. 遍历所有边
 for (int i = 0; i < G.vexnum; i++) {
 ArcNode* p = G.vertices[i].firstarc;
 while (p) {
 indegree[p->adjvex]++; // 被指向顶点的入度+1
 p = p->nextarc;
 }
 }
}
算法解释（邻接表）：
1. 无向图度计算
· 顶点度 = 其邻接链表的长度
· 时间复杂度：O(n+e)，每个边结点仅访问1次
· 空间效率：仅需O(n)额外空间存储度数组
1. 有向图出度计算
· 与无向图相同，直接统计链表长度
· 优势：O(1)时间可获取单个顶点出度（若存储链表长度）
1. 有向图入度计算
· 核心思想：全局扫描所有边，统计指向每个顶点的次数
· 时间复杂度：O(n+e)，线性时间
· 优化方案：
· 构建逆邻接表（存储入边）可使入度查询降至O(1)
· 维护入度动态计数器（增删边时同步更新）
· 稀疏图优势：当 e ≪ n² 时，比邻接矩阵快1-2个数量级

关键对比总结
工程建议：
1. 对于需要频繁查询入度的有向图，建议同时维护正向邻接表（出边）和逆向邻接表（入边）
1. 在动态图场景中，应设计度计数器，在增删边时同步更新（避免实时计算）
1. 超大规模图处理（如社交网络）优先选择邻接表，结合哈希映射优化顶点查找
Prim算法：最小生成树(MST)
目的
求解无向连通带权图的最小生成树，即连接所有顶点且边权总和最小的子图。
适用对象
· 无向连通带权图
· 稠密图效果更佳（邻接矩阵实现时）
算法讲解
Prim算法是贪心策略：从任一顶点开始，每次选择连接已选顶点集和未选顶点集的最小权值边，逐步扩展生成树。
核心思想：
· 维护两个集合：已加入MST的顶点集S和未加入的顶点集V-S
· 对每个顶点v∈V-S，维护其与S的最短连接边
· 每次将最短连接边对应的顶点加入S，更新相关连接信息
实行过程（手算示例）
图例：5个顶点(A,B,C,D,E)，边权如下
A-B:2, A-C:3, A-D:7
B-C:4, B-D:5
C-D:1, C-E:6
D-E:8
步骤：
1. 选择A作为起始点，S={A}
· 与A相连边：AB=2, AC=3, AD=7
· 最小边：AB=2
1. S={A,B}
· 新增连接：BC=4, BD=5
· 当前最短连接：AC=3（A到C）, BC=4（B到C）, BD=5（B到D）
· 最小边：AC=3
1. S={A,B,C}
· 新增连接：CD=1, CE=6
· 当前最短连接：CD=1, CE=6, BD=5
· 最小边：CD=1
1. S={A,B,C,D}
· 新增连接：DE=8
· 当前最短连接：CE=6, DE=8
· 最小边：CE=6
1. S={A,B,C,D,E}，算法结束
· MST边集：{AB, AC, CD, CE}
· 总权值：2+3+1+6=12
代码实现
void MiniSpanTree_Prim(AMGraph G, int start) {
 int min, i, j, k;
 int adjvex[MVNum]; // 保存相关顶点下标
 int lowcost[MVNum]; // 保存相关顶点间权值

 // 初始化
 for (i = 0; i < G.vexnum; i++) {
 lowcost[i] = G.arcs[start][i]; // 将start与其他顶点的权值存入
 adjvex[i] = start; // 初始化父节点为start
 }
 lowcost[start] = 0; // start加入MST集合

 // MST需要n-1条边
 for (i = 1; i < G.vexnum; i++) {
 min = MaxInt;
 j = 1; k = 0;

 // 寻找最小权值边
 while (j < G.vexnum) {
 if (lowcost[j] != 0 && lowcost[j] < min) {
 min = lowcost[j];
 k = j;
 }
 j++;
 }

 printf("(%c, %c)\n", G.vexs[adjvex[k]], G.vexs[k]);
 lowcost[k] = 0; // 顶点k加入MST

 // 更新lowcost和adjvex
 for (j = 0; j < G.vexnum; j++) {
 if (lowcost[j] != 0 && G.arcs[k][j] < lowcost[j]) {
 lowcost[j] = G.arcs[k][j];
 adjvex[j] = k;
 }
 }
 }
}

Kruskal算法：最小生成树(MST)
目的
求解无向连通带权图的最小生成树，与Prim相同但策略不同。
适用对象
· 无向连通带权图
· 稀疏图效果更佳（边数较少时）
算法讲解
Kruskal算法是贪心策略：将所有边按权值排序，依次选择最小边，若该边连接两个不同连通分量则加入MST。
核心思想：
· 按权值升序排序所有边
· 使用并查集(Union-Find)高效判断边是否会形成环
· 选择不形成环的最小权值边，直到MST包含n-1条边
实行过程（手算示例）
图例：同Prim算法示例图
步骤：
1. 按权值排序边：CD(1), AB(2), AC(3), BC(4), BD(5), CE(6), AD(7), DE(8)
1. 选择CD(1)：MST={CD}
· 连通分量：{C,D}, {A}, {B}, {E}
1. 选择AB(2)：MST={CD, AB}
· 连通分量：{C,D}, {A,B}, {E}
1. 选择AC(3)：MST={CD, AB, AC}
· 连通分量：{A,B,C,D}, {E}
1. 考虑BC(4)：B和C已连通，跳过
1. 考虑BD(5)：B和D已连通，跳过
1. 选择CE(6)：MST={CD, AB, AC, CE}
· 连通分量：{A,B,C,D,E}
· 已有4条边(n-1=4)，算法结束
1. MST边集：{CD, AB, AC, CE}
· 总权值：1+2+3+6=12
代码实现
// 并查集相关操作
int find(int parent[], int i) {
 while (parent[i] != i)
 i = parent[i];
 return i;
}

void unionSet(int parent[], int x, int y) {
 int xset = find(parent, x);
 int yset = find(parent, y);
 parent[xset] = yset;
}

// 边结构定义
typedef struct {
 int begin;
 int end;
 int weight;
} Edge;

void MiniSpanTree_Kruskal(AMGraph G) {
 Edge edges[MVNum*(MVNum-1)/2];
 int edgeCount = 0;

 // 收集所有边（无向图只取一半）
 for (int i = 0; i < G.vexnum; i++) {
 for (int j = i+1; j < G.vexnum; j++) {
 if (G.arcs[i][j] != MaxInt) {
 edges[edgeCount].begin = i;
 edges[edgeCount].end = j;
 edges[edgeCount].weight = G.arcs[i][j];
 edgeCount++;
 }
 }
 }

 // 按权重排序（使用插入排序）
 for (int i = 1; i < edgeCount; i++) {
 Edge key = edges[i];
 int j = i - 1;
 while (j >= 0 && edges[j].weight > key.weight) {
 edges[j+1] = edges[j];
 j = j - 1;
 }
 edges[j+1] = key;
 }

 // 初始化并查集
 int parent[MVNum];
 for (int i = 0; i < G.vexnum; i++)
 parent[i] = i;

 // Kruskal核心
 printf("最小生成树边集:\n");
 int mstEdgeCount = 0;
 for (int i = 0; i < edgeCount; i++) {
 int n = find(parent, edges[i].begin);
 int m = find(parent, edges[i].end);

 if (n != m) { // 不在同一连通分量
 unionSet(parent, n, m);
 printf("(%c, %c) = %d\n",
 G.vexs[edges[i].begin],
 G.vexs[edges[i].end],
 edges[i].weight);
 mstEdgeCount++;

 if (mstEdgeCount == G.vexnum-1)
 break;
 }
 }
}

Dijkstra算法：单源最短路径
目的
求解带权有向图/无向图中单源最短路径问题，即从一个源点到其他所有顶点的最短路径。
适用对象
· 有向图或无向图
· 边权必须非负
· 单源最短路径场景
算法讲解
Dijkstra算法是贪心策略：维护已确定最短路径的顶点集S，每次将V-S中距离源点最近的顶点加入S，并更新路径。
核心思想：
· 初始化：源点距离为0，其他为∞
· 维护两个集合：已确定最短路径的S和未确定的V-S
· 每次从V-S中选择距离最小的顶点u加入S
· 用u更新V-S中顶点的距离：dist[v] = min(dist[v], dist[u] + w(u,v))
实行过程（手算示例）
图例：5个顶点(A,B,C,D,E)，有向边权如下
A→B:10, A→C:3
B→C:1, B→D:2
C→B:4, C→D:8, C→E:2
D→E:7
E→D:9
以A为源点：
1. 初始化：
· S = {A}
· dist = [0, 10, 3, ∞, ∞]
· path = [A, A, A, -, -]
1. 选择C（距离3）：
· S = {A,C}
· 通过C更新：
· B: min(10, 3+4)=7
· D: min(∞, 3+8)=11
· E: min(∞, 3+2)=5
· dist = [0, 7, 3, 11, 5]
· path = [A, C, A, C, C]
1. 选择E（距离5）：
· S = {A,C,E}
· 通过E更新：
· D: min(11, 5+9)=11（不变）
· dist = [0, 7, 3, 11, 5]
· path = [A, C, A, C, C]
1. 选择B（距离7）：
· S = {A,C,E,B}
· 通过B更新：
· C: 已在S中
· D: min(11, 7+2)=9
· dist = [0, 7, 3, 9, 5]
· path = [A, C, A, B, C]
1. 选择D（距离9）：
· S = {A,C,E,B,D}
· 无更新
· dist = [0, 7, 3, 9, 5]
· path = [A, C, A, B, C]
1. 最短路径结果：
· A→A: 0
· A→B: 7 (A→C→B)
· A→C: 3 (A→C)
· A→D: 9 (A→C→B→D)
· A→E: 5 (A→C→E)
代码实现
void ShortestPath_DIJKSTRA(AMGraph G, int v0) {
 int i, j, k, min;
 int final[MVNum]; // 标记顶点是否已找到最短路径
 int dist[MVNum]; // 保存最短路径长度
 int path[MVNum]; // 保存最短路径前驱

 // 初始化
 for (i = 0; i < G.vexnum; i++) {
 final[i] = 0;
 dist[i] = G.arcs[v0][i]; // 初始距离
 if (dist[i] < MaxInt && i != v0)
 path[i] = v0; // 有直接路径
 else
 path[i] = -1; // 无直接路径
 }
 dist[v0] = 0; // 源点到自身距离为0
 final[v0] = 1; // 源点加入S集合

 // 主循环，每次求得v0到一个顶点的最短路径
 for (i = 1; i < G.vexnum; i++) {
 min = MaxInt;
 // 选择当前距离最小的顶点
 for (j = 0; j < G.vexnum; j++) {
 if (!final[j] && dist[j] < min) {
 k = j;
 min = dist[j];
 }
 }
 final[k] = 1; // 将顶点k加入S集合

 // 更新距离
 for (j = 0; j < G.vexnum; j++) {
 if (!final[j] && (min + G.arcs[k][j] < dist[j])) {
 dist[j] = min + G.arcs[k][j];
 path[j] = k; // 更新前驱
 }
 }
 }

 // 输出结果
 for (i = 0; i < G.vexnum; i++) {
 if (i != v0) {
 printf("%c→%c: 最短距离=%d, 路径: ", G.vexs[v0], G.vexs[i], dist[i]);
 // 逆向输出路径
 int stack[MVNum], top = -1;
 j = i;
 while (j != v0) {
 stack[++top] = j;
 j = path[j];
 }
 stack[++top] = v0;

 // 正向输出路径
 printf("%c", G.vexs[stack[top--]]);
 while (top >= 0)
 printf("→%c", G.vexs[stack[top--]]);
 printf("\n");
 }
 }
}

算法对比总结
工程建议：
1. 对于稠密图(边数接近n²)，Prim(邻接矩阵)通常比Kruskal更高效
1. 对于稀疏图(边数接近n)，Kruskal通常更优
1. Dijkstra不适用于存在负权边的图，此时应选择Bellman-Ford算法
1. 现代实现中，这三种算法通常使用优先队列(堆)优化，可将时间复杂度降低至O(e log n)
拓扑排序算法详解
基本原理
拓扑排序是对有向无环图（Directed Acyclic Graph, DAG）的一种线性排序，使得对于图中任意两个顶点u和v，若存在一条从u到v的路径，则在排序结果中u出现在v之前。
核心思想：
1. 从有向图中选取一个没有前驱（入度为0）的顶点输出
1. 从图中删除该顶点及其所有出边
1. 重复上述两步，直到图中不再存在入度为0的顶点
1. 若最终输出顶点数少于原图顶点数，表明图中存在环，无法完成拓扑排序
应用场景：
· 工程项目的工序安排
· 课程学习的先后顺序
· 编译系统的模块依赖
· 数据处理的流水线调度
数据结构设计
1. 邻接表结构扩展
#define MVNum 100 // 最大顶点数
typedef char VerTexType; // 顶点信息类型
typedef int ArcType; // 弧权值类型

// 边结点
typedef struct ArcNode {
 int adjvex; // 该弧所指向的顶点位置
 struct ArcNode *nextarc; // 指向下一条弧的指针
 ArcType info; // 弧相关信息
} ArcNode;

// 顶点结点
typedef struct VNode {
 VerTexType data; // 顶点信息
 int indegree; // 顶点入度（拓扑排序专用）
 ArcNode *firstarc; // 指向第一条依附该顶点的弧
} VNode, AdjList[MVNum];

// 有向图
typedef struct {
 AdjList vertices; // 邻接表
 int vexnum, arcnum; // 图的当前顶点数和弧数
} ALGraph;
1. 辅助数据结构
typedef int SElemType; // 栈元素类型
typedef struct {
 SElemType *base; // 栈底指针
 SElemType *top; // 栈顶指针
 int stacksize; // 栈容量
} SqStack;

// 栈操作函数声明
Status InitStack(SqStack *S);
Status Push(SqStack *S, SElemType e);
Status Pop(SqStack *S, SElemType *e);
Status StackEmpty(SqStack S);
拓扑排序执行过程
1. 算法步骤
1. 初始化：
· 计算图中每个顶点的入度
· 将所有入度为0的顶点入栈
1. 主循环（当栈非空时）：
· 从栈中弹出一个顶点v，输出v
· 将v加入拓扑序列
· 遍历v的所有邻接点w：
· 将w的入度减1
· 若w的入度变为0，则将w入栈
1. 环路检测：
· 若输出顶点数等于图的顶点数，则成功完成拓扑排序
· 否则，图中存在环，无法进行拓扑排序
1. 手算示例
示例图：有向图 G=(V,E)，其中 V={A,B,C,D,E,F}，E={(A,B),(A,C),(B,D),(C,D),(C,E),(D,F),(E,F)}
初始入度：
· A: 0
· B: 1
· C: 1
· D: 2
· E: 1
· F: 2
拓扑排序步骤：
1. 初始化：入度为0的顶点：A → 入栈 [A]
1. 弹出A：输出A
· 删除A的出边：(A,B),(A,C)
· 更新入度：B:0, C:0
· 入度为0的顶点：B,C → 入栈 [B,C]（假设B先入栈）
1. 弹出B：输出B
· 删除B的出边：(B,D)
· 更新入度：D:1
· 无新入度为0的顶点
1. 弹出C：输出C
· 删除C的出边：(C,D),(C,E)
· 更新入度：D:0, E:0
· 入度为0的顶点：D,E → 入栈 [D,E]
1. 弹出D：输出D
· 删除D的出边：(D,F)
· 更新入度：F:1
· 无新入度为0的顶点
1. 弹出E：输出E
· 删除E的出边：(E,F)
· 更新入度：F:0
· 入度为0的顶点：F → 入栈 [F]
1. 弹出F：输出F
· 无出边
· 栈为空
1. 验证：输出顶点数=6=原图顶点数，拓扑排序成功
可能的拓扑序列：
· A→B→C→D→E→F
· A→B→C→E→D→F
· A→C→B→D→E→F
· A→C→B→E→D→F
· A→C→E→B→D→F
注：拓扑序列不唯一，取决于入度为0顶点的选择顺序
代码实现
Status TopologicalSort(ALGraph G) {
 SqStack S;
 int i, count, k;
 ArcNode *p;

 // 1. 初始化栈
 InitStack(&S);

 // 2. 求各顶点入度
 FindInDegree(G); // 此函数计算各顶点入度，存入vertices[i].indegree

 // 3. 将入度为0的顶点入栈
 for (i = 0; i < G.vexnum; i++) {
 if (G.vertices[i].indegree == 0) {
 Push(&S, i);
 }
 }

 // 4. 初始化计数器
 count = 0;

 // 5. 主循环：栈非空时执行
 while (!StackEmpty(S)) {
 // 5.1 弹出栈顶顶点
 Pop(&S, &i);
 printf("%c ", G.vertices[i].data); // 输出顶点
 count++; // 计数器加1

 // 5.2 遍历顶点i的所有邻接点
 for (p = G.vertices[i].firstarc; p; p = p->nextarc) {
 k = p->adjvex; // 邻接点序号

 // 5.3 入度减1
 if (!(--(G.vertices[k].indegree))) {
 Push(&S, k); // 若入度为0，入栈
 }
 }
 }

 // 6. 环路检测
 if (count < G.vexnum) {
 printf("\n图中存在环路，无法进行拓扑排序\n");
 return ERROR;
 } else {
 printf("\n拓扑排序成功\n");
 return OK;
 }
}
辅助函数实现
// 求各顶点入度
void FindInDegree(ALGraph G) {
 int i;
 ArcNode *p;

 // 1. 初始化所有顶点入度为0
 for (i = 0; i < G.vexnum; i++) {
 G.vertices[i].indegree = 0;
 }

 // 2. 遍历所有边，统计入度
 for (i = 0; i < G.vexnum; i++) {
 p = G.vertices[i].firstarc;
 while (p) {
 G.vertices[p->adjvex].indegree++;
 p = p->nextarc;
 }
 }
}

// 栈操作实现
Status InitStack(SqStack *S) {
 S->base = (SElemType *)malloc(MVNum * sizeof(SElemType));
 if (!S->base) return OVERFLOW;
 S->top = S->base;
 S->stacksize = MVNum;
 return OK;
}

Status Push(SqStack *S, SElemType e) {
 if (S->top - S->base >= S->stacksize) return ERROR;
 *(S->top++) = e;
 return OK;
}

Status Pop(SqStack *S, SElemType *e) {
 if (S->top == S->base) return ERROR;
 *e = *(--(S->top));
 return OK;
}

Status StackEmpty(SqStack S) {
 return S.top == S.base;
}
代码讲解
1. 核心算法流程
· 初始化阶段：计算每个顶点的入度，将入度为0的顶点入栈
· 主处理阶段：
· 循环执行"出栈→输出→减少邻接点入度→入度为0则入栈"的操作
· 使用计数器记录已输出顶点数量
· 终止检测：根据计数器值判断图中是否存在环路
1. 关键技术点
· 入度计算：通过遍历所有边，统计每个顶点被指向的次数
· 动态更新：删除顶点时，动态更新其邻接点入度
· 环路检测：通过比较输出顶点数与总顶点数
· 栈的应用：使用栈暂存所有入度为0的顶点，满足"后进先出"的特性
1. 算法复杂度分析
· 时间复杂度：O(n+e)
· 求入度：遍历所有边，O(e)
· 拓扑排序：每个顶点和每条边都被处理一次，O(n+e)
· 空间复杂度：O(n)
· 栈空间：最多存储n个顶点
· 辅助数组：入度数组占用O(n)空间
1. 结构化设计：将功能分解为多个子函数（FindInDegree、栈操作等）
1. 状态返回：使用Status类型（OK/ERROR）表示操作结果
1. 参数传递：采用引用传递（&G）实现原地修改
1. 错误处理：包含环路检测，保证算法鲁棒性
1. 内存管理：显式申请/释放栈空间，体现C语言特性
改进与变种
1. 队列实现：
· // 使用队列替代栈，得到不同的拓扑序列
Status TopologicalSort_Queue(ALGraph G) {
 LinkQueue Q;
 // 初始化、入度计算等相同
 InitQueue(&Q);
 // 将入度为0的顶点入队
 while (!QueueEmpty(Q)) {
 DeQueue(&Q, &i);
 // 处理逻辑相同
 if (入度为0) EnQueue(&Q, k);
 }
 // 环路检测相同
}
1. 返回拓扑序列：
· // 修改算法，返回拓扑序列而非直接输出
Status GetTopologicalSequence(ALGraph G, int *topoSeq) {
 // ...相同初始化
 int index = 0;
 while (!StackEmpty(S)) {
 Pop(&S, &i);
 topoSeq[index++] = i; // 保存到序列
 // ...相同处理
 }
 return count == G.vexnum ? OK : ERROR;
}
1. 关键路径应用：
· 拓扑排序是有向无环图求关键路径的第一步
· 基于拓扑序列，可高效计算事件的最早/最晚发生时间
[bookmark: 查找-2]查找
[bookmark: 设置监视哨的顺序查找代码]设置监视哨的顺序查找代码
int Search_Seq(SSTable ST, KeyType key) {
 // 设置监视哨：将查找关键字放在表头（0号位置）
 ST.R[0].key = key; // "哨兵"：确保循环一定能终止

 // 从后往前查找（无需检查i是否越界）
 for (i = ST.length; ST.R[i].key != key; --i);

 return i; // 找到返回位置，未找到返回0
}
关键点解释：
· 监视哨作用：ST.R[0].key = key确保循环一定会在0号位置终止，无需在循环条件中判断i >= 1
· 循环简化：原顺序查找需两个条件i >= 1 && ST.R[i].key != key，现只需一个条件
· 返回值：返回0表示未找到（在监视哨位置终止），否则返回实际位置
[bookmark: 折半查找二分查找]折半查找（二分查找)

算法思想
折半查找要求线性表必须采用顺序存储结构，且表中元素按关键字有序排列（通常为升序）。其核心思想是：
1. 分治策略：每次将待查区间缩小一半。
1. 比较规则：取区间中点元素 mid 与目标值 key 比较：
· 若 key == L[mid]，查找成功；
· 若 key < L[mid]，在左半子区间 [low, mid-1] 继续查找；
· 若 key > L[mid]，在右半子区间 [mid+1, high] 继续查找。
1. 终止条件：当 low > high 时，查找失败。

C语言代码实现
// 顺序表结构定义
typedef struct {
 int *elem; // 存储空间基址
 int length; // 当前长度
} SSTable;

// 折半查找函数
int Binary_Search(SSTable L, int key) {
 int low = 1; // 初始左边界（1-based索引）
 int high = L.length; // 初始右边界
 while (low <= high) {
 int mid = (low + high) / 2; // 计算中点位置
 if (key == L.elem[mid])
 return mid; // 查找成功，返回元素下标
 else if (key < L.elem[mid])
 high = mid - 1; // 在左半区继续查找
 else
 low = mid + 1; // 在右半区继续查找
 }
 return -1; // 查找失败
}
关键细节说明：
1. 1-based索引：教材中顺序表通常使用 elem[1] 到 elem[length] 存储有效数据（elem[0] 闲置），故初始 low=1。
1. 整数溢出处理：实际工程中 (low+high)/2 可能溢出，应改用 low + (high-low)/2，但教材为简洁未做此优化。
1. 时间复杂度：$O(\log_2 n)$，每次比较将查找范围缩小一半。
1. 适用场景：静态查找表（数据不频繁变动），因插入/删除需移动大量元素。

查找过程示例
假设有序表 L = [0, 12, 25, 38, 45, 52]（L.elem[0] 闲置，length=5），查找 key=38：
注：实际步骤2后已确定 mid=4 时 L[4]=45 > 38，故步骤3中 high=mid-1=3，此时 low=4 > high=3，循环终止，返回 -1（未找到）。
（本例为演示终止条件，实际表中无38；若存在则在 mid=4 时应命中）

重点强调
1. 前提条件：表必须有序且顺序存储（链式结构无法随机访问中点）。
1. 性能对比：
· 平均查找长度 $ASL \approx \log_2(n+1) - 1$，远优于顺序查找的 $(n+1)/2$。
· 但仅适用于静态表，动态表需用二叉排序树或B树。
1. 边界处理：
· 循环条件 while (low <= high) 确保区间 [low, high] 有效；
· mid 计算取整（C语言整除截断），等价于 $\lfloor (low+high)/2 \rfloor$。
[bookmark: 二叉排序树二叉查找树）]二叉排序树（二叉查找树）

核心性质
1. 左小右大：
· 若左子树非空，则左子树所有节点值 < 根节点值
· 若右子树非空，则右子树所有节点值 > 根节点值
1. 子树递归：左、右子树也分别是二叉排序树
1. 中序遍历：可得到严格递增的有序序列

C语言代码实现
// 节点结构定义
typedef int KeyType;
typedef struct BSTNode {
 KeyType key; // 关键字
 struct BSTNode *lchild, // 左孩子指针
 *rchild; // 右孩子指针
} BSTNode, *BSTree;

// ============== 1. 查找操作 ==============
BSTNode* BST_Search(BSTree T, KeyType key) {
 if (!T || key == T->key) return T; // 递归终止：空树或命中
 if (key < T->key)
 return BST_Search(T->lchild, key); // 在左子树查找
 else
 return BST_Search(T->rchild, key); // 在右子树查找
}

// ============== 2. 插入操作 ==============
BSTNode* BST_Insert(BSTree *T, KeyType key) {
 if (!*T) { // 找到插入位置（空指针处）
 *T = (BSTree)malloc(sizeof(BSTNode));
 (*T)->key = key;
 (*T)->lchild = (*T)->rchild = NULL;
 return *T;
 }
 if (key < (*T)->key)
 return BST_Insert(&((*T)->lchild), key); // 递归插入左子树
 else if (key > (*T)->key)
 return BST_Insert(&((*T)->rchild), key); // 递归插入右子树
 else
 return NULL; // 关键字已存在，插入失败
}

// ============== 3. 创建操作 ==============
void CreateBST(BSTree *T, KeyType arr[], int n) {
 *T = NULL; // 初始化空树
 for (int i = 0; i < n; i++)
 BST_Insert(T, arr[i]); // 逐个插入构建
}

// ============== 4. 删除操作 ==============
BSTNode* BST_Delete(BSTree *T, KeyType key) {
 if (!*T) return NULL; // 树空，删除失败

 if (key < (*T)->key)
 return BST_Delete(&((*T)->lchild), key); // 在左子树删除
 else if (key > (*T)->key)
 return BST_Delete(&((*T)->rchild), key); // 在右子树删除
 else { // 找到待删节点
 BSTree p = *T;
 // 情况1：叶子节点或仅有一个子树
 if (!p->lchild) { // 无左子树
 *T = p->rchild;
 free(p);
 }
 else if (!p->rchild) { // 无右子树
 *T = p->lchild;
 free(p);
 }
 // 情况2：左右子树均存在（用中序前驱替代）
 else {
 BSTree s = p->lchild; // 指向左子树
 while (s->rchild) s = s->rchild; // 找左子树最大值（前驱）

 p->key = s->key; // 值替换
 // 递归删除前驱节点（此时前驱必无右子树）
 BST_Delete(&(p->lchild), s->key);
 }
 return *T;
 }
}
关键细节说明：
1. 指针引用处理：
· 所有修改树结构的操作（插入/删除）需传递二级指针（BSTree*），确保能修改父节点指针
1. 删除操作三情况（P230）：
1. 平衡性缺陷：
· 教材明确指出（P232）："当输入序列有序时，二叉排序树退化为单支树，查找效率降至 $O(n)$"
· 改进方案需用平衡二叉树（AVL）（后续章节内容）

操作流程示例
初始序列：{45, 24, 53, 12, 37, 93}
构建过程：
 45
 / \
 24 53
 / \ \
12 37 93
删除 24 节点（有两个子树）：
1. 找 24 的中序前驱 → 左子树最大值 12
1. 用 12 替换 24 的值
1. 递归删除原 12 节点（此时 12 是叶子）
 45
 / \
 12 53 ← 24被替换为12
 / \ \
NULL 37 93 ← 原12节点被删除
删除 53 节点（仅右子树）：
直接用右子树根 93 替代 53
 45
 / \
 12 93 ← 53被93替代
 \
 37
[bookmark: 排序-2]排序
AVL树代码
代码（核心函数，C语言）：
typedef struct AVLNode {
 int key;
 int height;
 struct AVLNode *left, *right;
} AVLNode;

int getHeight(AVLNode* node) {
 return node ? node->height : 0;
}

int getBalanceFactor(AVLNode* node) {
 return node ? getHeight(node->left) - getHeight(node->right) : 0;
}

AVLNode* rightRotate(AVLNode* y) { // LL型调整
 AVLNode* x = y->left;
 AVLNode* T2 = x->right;
 x->right = y;
 y->left = T2;
 y->height = max(getHeight(y->left), getHeight(y->right)) + 1;
 x->height = max(getHeight(x->left), getHeight(x->right)) + 1;
 return x;
}

AVLNode* insert(AVLNode* node, int key) {
 if (!node) return newNode(key); // 创建新节点
 if (key < node->key) node->left = insert(node->left, key);
 else if (key > node->key) node->right = insert(node->right, key);
 else return node; // 重复键

 node->height = 1 + max(getHeight(node->left), getHeight(node->right));
 int bf = getBalanceFactor(node);

 // LL型
 if (bf > 1 && key < node->left->key) return rightRotate(node);
 // RR型
 if (bf < -1 && key > node->right->key) return leftRotate(node);
 // LR型
 if (bf > 1 && key > node->left->key) {
 node->left = leftRotate(node->left);
 return rightRotate(node);
 }
 // RL型
 if (bf < -1 && key < node->right->key) {
 node->right = rightRotate(node->right);
 return leftRotate(node);
 }
 return node;
}
代码讲解：
· 数据结构：AVLNode包含键值、高度、左右子指针。
· 辅助函数：getHeight处理空节点；getBalanceFactor计算平衡因子。
· 旋转：rightRotate实现LL型调整，更新高度。
· 插入逻辑：
· 递归插入后更新高度。
· 检查平衡因子，分四类失衡执行旋转：
· LL/RR型：单旋直接恢复平衡。
· LR/RL型：双旋先转换子树形态。
· 旋转后返回新子树根节点，维护树结构。
· 时间复杂度：插入/删除/查找均为O(log n)。
示例：初始空树，插入序列{10, 20, 30, 40, 50}。
操作过程：
1. 插入10：根节点。
1. 插入20：10的右子节点，BF(10)=-1（平衡）。
1. 插入30：20的右子节点，BF(10)=-2（RR型失衡），执行左旋：20成为根，10为左子，30为右子。
1. 插入40：30的右子节点，BF(20)=-1（平衡）。
1. 插入50：40的右子节点，BF(30)=-2（RR型失衡），对30左旋；BF(20)=-2（新RR型），对20左旋：40成为根，20为左子（含10），50为右子，30挂载于20右子。
· 最终树：
· 40
 / \
 20 50
 / \
 10 30
· 平衡验证：所有节点|BF|≤1。
B-树代码
代码（核心逻辑，C语言伪代码）：
#define M 3 // 3阶B-树
typedef struct BTNode {
 int keyNum;
 int keys[M]; // 关键字数组
 struct BTNode* children[M+1]; // 子树指针
 bool isLeaf;
} BTNode;

BTNode* insert(BTNode* root, int key) {
 if (root == NULL) {
 root = newNode(); // 创建根
 root->keys[0] = key;
 root->keyNum = 1;
 return root;
 }
 if (root->isLeaf) {
 if (root->keyNum < M-1) { // 未满
 insertIntoNode(root, key); // 插入并排序
 } else { // 满，需分裂
 BTNode* newNode = splitNode(root, key); // 分裂并插入key
 // 创建新根
 BTNode* newRoot = newNode();
 newRoot->keys[0] = root->keys[M/2]; // 中间关键字上移
 newRoot->children[0] = root;
 newRoot->children[1] = newNode;
 newRoot->keyNum = 1;
 newRoot->isLeaf = false;
 root = newRoot;
 }
 } else {
 int i = 0;
 while (i < root->keyNum && key > root->keys[i]) i++;
 root->children[i] = insert(root->children[i], key);
 if (root->children[i]->keyNum == M) { // 子节点满
 adjustNode(root, i); // 分裂子节点并上移
 }
 }
 return root;
}
代码讲解：
· 数据结构：BTNode含关键字数、关键字数组、子树指针数组及叶节点标记。
· 插入逻辑：
· 递归至叶节点插入。
· 节点满时调用splitNode：将原节点分裂为两节点，中间关键字上移父节点。
· 根分裂时创建新根，树高增1。
· 调整：adjustNode处理子节点分裂，将上移关键字插入父节点，可能触发父节点分裂。
· 时间复杂度：插入/删除/查找均为O(log_m n)。
示例：3阶B-树（m=3），插入序列{10, 20, 30, 40}。
操作过程：
1. 插入10、20：根节点[10, 20]。
1. 插入30：根满，分裂：
· 中间关键字20上移（新根），左子节点[10]，右子节点[30]。
1. 插入40：40插入右子节点[30] → [30,40]（未满）。
· 最终树：
· [20]
 / \
 [10] [30,40]
· 删除30：
· 30在叶节点，删除后[40]关键字数=1（≥⌈3/2⌉-1=1），直接删除。
B+树代码
代码（插入核心，C语言伪代码）：
typedef struct BPlusNode {
 int keyNum;
 int keys[M]; // 非叶节点为索引，叶节点为关键字
 void* data[M]; // 叶节点数据指针
 struct BPlusNode* children[M+1]; // 非叶节点子树
 struct BPlusNode* next; // 叶节点链表指针
 bool isLeaf;
} BPlusNode;

void insertIntoLeaf(BPlusNode* leaf, int key, void* value) {
 int i = leaf->keyNum - 1;
 while (i >= 0 && key < leaf->keys[i]) {
 leaf->keys[i+1] = leaf->keys[i];
 leaf->data[i+1] = leaf->data[i];
 i--;
 }
 leaf->keys[i+1] = key;
 leaf->data[i+1] = value;
 leaf->keyNum++;
}

BPlusNode* insert(BPlusNode* root, int key, void* value) {
 if (root == NULL) { /* 创建根 */ }
 if (root->isLeaf) {
 insertIntoLeaf(root, key, value);
 if (root->keyNum == M) { // 满，分裂
 BPlusNode* newLeaf = splitLeaf(root); // 分裂叶节点
 // 复制最小关键字到父节点
 int midKey = newLeaf->keys[0];
 root = insertNonLeaf(root, midKey, newLeaf); // 插入父节点
 }
 } else { /* 递归插入子树 */ }
 return root;
}
代码讲解：
· 数据结构：BPlusNode扩展next指针（叶节点链表），data数组存储指针。
· 插入逻辑：
· 叶节点插入时排序关键字及数据。
· 分裂叶节点：原节点保留前半关键字，新节点含后半；新节点最小关键字复制至父节点。
· insertNonLeaf处理非叶节点插入，规则同B-树。
· 关键区别：分裂时复制关键字（非移动），保证叶节点链表完整。
· 优势：范围查询高效，因所有数据在叶节点且链表连接。
示例：3阶B+树，插入序列{5, 10, 15, 20}。
操作过程：
1. 插入5、10：叶节点[5,10]。
1. 插入15：叶节点满，分裂：
· 左叶[5,10]，右叶[15]；父节点[10]（复制10）。
1. 插入20：20插入右叶[15] → [15,20]；父节点无需调整。
· 最终树：
· 非叶: [10]
 / \
 叶: [5,10] <-> [15,20] # 双向链表
· 范围查询[5,15]：从[5,10]开始，沿链表访问[15,20]，返回5,10,15。
红黑树代码
代码（插入修复，C语言）：
typedef enum { RED, BLACK } Color;
typedef struct RBNode {
 int key;
 Color color;
 struct RBNode *left, *right, *parent;
} RBNode;

void leftRotate(RBNode** root, RBNode* x) {
 RBNode* y = x->right;
 x->right = y->left;
 if (y->left != TNULL) y->left->parent = x;
 y->parent = x->parent;
 if (x->parent == NULL) *root = y;
 else if (x == x->parent->left) x->parent->left = y;
 else x->parent->right = y;
 y->left = x;
 x->parent = y;
}

void insertFixup(RBNode** root, RBNode* z) {
 while (z->parent->color == RED) {
 if (z->parent == z->parent->parent->left) {
 RBNode* uncle = z->parent->parent->right;
 // Case 2: 叔节点红
 if (uncle->color == RED) {
 z->parent->color = BLACK;
 uncle->color = BLACK;
 z->parent->parent->color = RED;
 z = z->parent->parent;
 } else {
 // Case 3: LR型
 if (z == z->parent->right) {
 z = z->parent;
 leftRotate(root, z);
 }
 // LL型
 z->parent->color = BLACK;
 z->parent->parent->color = RED;
 rightRotate(root, z->parent->parent);
 }
 } else { /* 对称处理 */ }
 }
 (*root)->color = BLACK; // 根恒黑
}
代码讲解：
· 数据结构：RBNode含颜色标记及parent指针；TNULL为全局黑叶节点。
· 插入修复：
· leftRotate/rightRotate处理旋转。
· insertFixup：
· Case 2（叔红）：翻转父/叔/祖父颜色，上移检查点。
· Case 3（叔黑）：
· LR/RL型：先子树旋转转为LL/RR型。
· LL/RR型：父变黑、祖父变红，旋转恢复平衡。
· 循环直至父节点为黑或根。
· 时间复杂度：插入/删除/查找均为O(log n)。
示例：插入序列{10, 20, 30}。
操作过程：
1. 插入10：根节点（黑）。
1. 插入20：10的右子（红），性质满足。
1. 插入30：20的右子（红），父20红、叔NIL黑（Case 3, RR型）：
· 20变黑，10变红，对10左旋 → 20为根（黑），10为左子（红），30为右子（红）。
· 最终树：
· 20(B)
 / \
 10(R) 30(R)
· 验证：根黑；无连续红；黑高均为2（根到NIL）。
总结
· 平衡二叉树（AVL）：严格高度平衡，适合读多写少场景；旋转频繁，写开销大。
· B-树：多路平衡，适合磁盘存储（如文件系统）；节点大小匹配磁盘页。
· B+树：B-树变种，叶节点链表支持高效范围查询；数据库索引首选。
· 红黑树：近似平衡，插入/删除调整快；标准库常用（如C++ STL map）。
散列表及探测
1. C++ 代码实现
(1) 开放地址法（线性探测）
#include <vector>
#include <climits>
using namespace std;

class LinearProbingHashTable {
private:
 vector<int> table; // 存储键，-1=EMPTY, -2=DELETED
 int size; // 当前元素数量
 const double MAX_LOAD = 0.7; // 最大装填因子

 int hash(int key) {
 return key % table.size();
 }

 void resize() {
 vector<int> oldTable = table;
 int newSize = table.size() * 2 + 1; // 新表长取质数
 table.assign(newSize, -1); // -1 表示空
 size = 0;
 for (int key : oldTable) {
 if (key >= 0) insert(key); // 重新插入有效键
 }
 }

public:
 LinearProbingHashTable(int capacity = 11) : table(capacity, -1), size(0) {}

 void insert(int key) {
 if (size >= table.size() * MAX_LOAD) resize();
 int idx = hash(key);
 int i = 0;
 while (table[(idx + i) % table.size()] >= 0) { // 跳过非空位
 i++;
 }
 table[(idx + i) % table.size()] = key; // 插入新位置
 size++;
 }

 bool search(int key) {
 int idx = hash(key);
 int i = 0;
 while (table[(idx + i) % table.size()] != -1) {
 if (table[(idx + i) % table.size()] == key)
 return true;
 i++;
 }
 return false;
 }

 void remove(int key) {
 int idx = hash(key);
 int i = 0;
 while (table[(idx + i) % table.size()] != -1) {
 if (table[(idx + i) % table.size()] == key) {
 table[(idx + i) % table.size()] = -2; // 标记为DELETED
 size--;
 return;
 }
 i++;
 }
 }
};
代码讲解：
· 初始化：表长默认 11（质数），用 -1 标记空位，-2 标记删除。
· 扩容：当 α > 0.7 时扩容至 2*原长+1（保证质数），重新散列所有键。
· 线性探测：冲突时顺序查找 (idx + i) % size。
· 删除：标记为 -2 避免破坏探测链，但占用空间需在负载过高时通过 resize() 重建。
(2) 链地址法
#include <vector>
#include <list>
using namespace std;

class ChainedHashTable {
private:
 vector<list<int>> table; // 每个位置是一个链表
 int size;
 const double MAX_LOAD = 1.0; // 链地址法允许α>1

 int hash(int key) {
 return key % table.size();
 }

 void resize() {
 vector<list<int>> oldTable = table;
 int newSize = table.size() * 2 + 1;
 table.resize(newSize);
 size = 0;
 for (auto& bucket : oldTable) {
 for (int key : bucket) {
 insert(key); // 重新插入
 }
 }
 }

public:
 ChainedHashTable(int capacity = 11) : table(capacity), size(0) {}

 void insert(int key) {
 if (size >= table.size() * MAX_LOAD) resize();
 int idx = hash(key);
 table[idx].push_back(key); // 直接加入链表尾
 size++;
 }

 bool search(int key) {
 int idx = hash(key);
 for (int k : table[idx]) {
 if (k == key) return true;
 }
 return false;
 }

 void remove(int key) {
 int idx = hash(key);
 table[idx].remove(key); // 链表内置删除
 size--;
 }
};
代码讲解：
· 初始化：table 是链表数组，每个桶独立存储冲突键。
· 插入：直接追加到链表尾（O(1)）。
· 删除：调用 list::remove 遍历删除（O(链表长度)）。
· 优势：无需处理探测序列，扩容后只需重新散列键到新桶。
直接插入排序
Python代码
def insertion_sort(arr):
 n = len(arr)
 for i in range(1, n):
 key = arr[i]
 j = i - 1
 # 从后向前扫描已排序区
 while j >= 0 and arr[j] > key:
 arr[j + 1] = arr[j] # 元素后移
 j -= 1
 arr[j + 1] = key # 插入位置
 print(f"第{i}趟: {arr}")
 return arr

处理稳定性：使用元组(值, 原始索引)
arr = [(12,0), (2,1), (16,2), (30,3), (28,4), (10,5), (16,6), (20,7), (6,8), (18,9)]
sorted_arr = insertion_sort(arr)
输出时忽略索引：[x[0] for x in sorted_arr]
希尔排序
Python代码
def shell_sort(arr, gaps):
 n = len(arr)
 for gap in gaps:
 # 对每个分组进行插入排序
 for i in range(gap, n):
 temp = arr[i]
 j = i
 while j >= gap and arr[j - gap] > temp:
 arr[j] = arr[j - gap]
 j -= gap
 arr[j] = temp
 print(f"增量{gap}后: {arr}")
 return arr

使用增量序列[5, 3, 1]
arr = [12, 2, 16, 30, 28, 10, 16, 20, 6, 18] # 16*用16表示
shell_sort(arr, [5, 3, 1])
冒泡排序
Python代码
def bubble_sort(arr):
 n = len(arr)
 for i in range(n - 1):
 swapped = False
 # 每趟比较到未排序区末尾
 for j in range(0, n - i - 1):
 if arr[j] > arr[j + 1]:
 arr[j], arr[j + 1] = arr[j + 1], arr[j] # 交换
 swapped = True
 print(f"第{i+1}趟: {arr}")
 if not swapped: # 优化：无交换则提前终止
 break
 return arr

arr = [12, 2, 16, 30, 28, 10, 16, 20, 6, 18]
bubble_sort(arr)
快速排序
Python代码
def quick_sort(arr, low, high):
 if low < high:
 pi = partition(arr, low, high)
 print(f"基准{arr[pi]}划分后: {arr}")
 quick_sort(arr, low, pi - 1) # 递归左子列
 quick_sort(arr, pi + 1, high) # 递归右子列

def partition(arr, low, high):
 pivot = arr[low] # 选择首元素为基准
 i = low + 1
 j = high

 while True:
 # 从左找≥基准的元素
 while i <= j and arr[i] < pivot:
 i += 1
 # 从右找≤基准的元素
 while i <= j and arr[j] > pivot:
 j -= 1
 if i > j:
 break
 arr[i], arr[j] = arr[j], arr[i] # 交换
 i += 1
 j -= 1

 arr[low], arr[j] = arr[j], arr[low] # 基准归位
 return j # 返回基准位置

arr = [12, 2, 16, 30, 28, 10, 16, 20, 6, 18]
quick_sort(arr, 0, len(arr) - 1)
简单选择排序
Python代码
def selection_sort(arr):
 n = len(arr)
 for i in range(n - 1):
 min_idx = i
 # 寻找未排序区最小元素
 for j in range(i + 1, n):
 if arr[j] < arr[min_idx]:
 min_idx = j
 # 交换到未排序区首部
 arr[i], arr[min_idx] = arr[min_idx], arr[i]
 print(f"第{i+1}趟: {arr}")
 return arr

arr = [12, 2, 16, 30, 28, 10, 16, 20, 6, 18]
selection_sort(arr)
堆排序
Python代码
def heap_sort(arr):
 n = len(arr)

 # 建最大堆：从最后一个非叶子节点开始
 for i in range(n // 2 - 1, -1, -1):
 heapify(arr, n, i)
 print(f"初始堆: {arr}")

 # 逐步归位最大值
 for i in range(n - 1, 0, -1):
 arr[i], arr[0] = arr[0], arr[i] # 堆顶与末尾交换
 heapify(arr, i, 0) # 调整剩余元素
 print(f"第{n-i}趟: {arr}")
 return arr

def heapify(arr, n, i):
 largest = i
 left = 2 * i + 1
 right = 2 * i + 2

 # 比较左右子节点
 if left < n and arr[left] > arr[largest]:
 largest = left
 if right < n and arr[right] > arr[largest]:
 largest = right

 # 递归调整子树
 if largest != i:
 arr[i], arr[largest] = arr[largest], arr[i]
 heapify(arr, n, largest)

arr = [12, 2, 16, 30, 28, 10, 16, 20, 6, 18]
heap_sort(arr)
代码实现（C++）
#include <vector>
using namespace std;

void maxHeapify(vector<int>& arr, int i, int heapSize) {
 int largest = i;
 int left = 2 * i + 1;
 int right = 2 * i + 2;

 if (left < heapSize && arr[left] > arr[largest])
 largest = left;
 if (right < heapSize && arr[right] > arr[largest])
 largest = right;

 if (largest != i) {
 swap(arr[i], arr[largest]);
 maxHeapify(arr, largest, heapSize); // 递归调整子树
 }
}

void heapSort(vector<int>& arr) {
 int n = arr.size();

 // 建大顶堆（从最后一个非叶子节点开始）
 for (int i = n / 2 - 1; i >= 0; i--) {
 maxHeapify(arr, i, n);
 }

 // 交换堆顶与末尾，缩小堆范围
 for (int i = n - 1; i > 0; i--) {
 swap(arr[0], arr[i]);
 maxHeapify(arr, 0, i); // 调整剩余元素
 }
}
代码讲解
1. 建堆：从索引n/2-1（最后一个非叶子节点）向前遍历，调用maxHeapify确保子树满足堆性质。
1. 调整堆：maxHeapify函数比较父节点与子节点，将最大值上浮，递归调整受影响的子树。
1. 排序：每次将堆顶（最大值）交换到末尾，堆大小减1，重新调整堆顶。
1. 复杂度：时间O(n log n)，空间O(1)（原地排序）。

树形选择排序（锦标赛排序）
思想
通过模拟体育锦标赛的方式，构建一棵胜者树（Winner Tree）。每个非叶子节点代表其子节点中的胜者（较小值），根节点即为最小值。每轮选出最小值后，将对应叶子节点置为无穷大，重新调整树结构获取次小值。
原理
1. 初始建树：将待排序元素作为叶子节点，自底向上构建完全二叉树，非叶子节点存储子节点中的较小值。
1. 选择最小值：根节点即为当前最小值。
1. 调整树：将最小值对应的叶子节点置为∞，从该节点向上回溯，重新比较兄弟节点更新父节点值，直至根节点。
1. 重复：重复步骤2-3，直到所有元素被选出。
手算过程（序列：13, 7, 10, 9）
初始树： (7) → 输出7
 / \
 (7) (9) → 7所在叶子置∞
 / \ / \
 13 ∞ 10 9

调整后： (9) → 输出9
 / \
 (13) (9) → 9所在叶子置∞
 / \ / \
 13 ∞ 10 ∞

调整后： (10) → 输出10
 / \
 (13) (10) → 10所在叶子置∞
 / \ / \
 13 ∞ ∞ ∞

调整后： (13) → 输出13
 / \
 (13) (∞)
 / \ / \
 13 ∞ ∞ ∞
最终序列：7, 9, 10, 13
代码实现（C++）
#include <vector>
#include <climits>
using namespace std;

void treeSelectionSort(vector<int>& arr) {
 int n = arr.size();
 if (n <= 1) return;

 // 构建胜者树（完全二叉树）
 int treeSize = 1;
 while (treeSize < n) treeSize *= 2; // 扩展为2的幂
 vector<int> tree(2 * treeSize - 1, INT_MAX);

 // 填充叶子节点
 for (int i = 0; i < n; i++) {
 tree[treeSize - 1 + i] = arr[i];
 }

 // 自底向上建树
 for (int i = treeSize - 2; i >= 0; i--) {
 tree[i] = min(tree[2 * i + 1], tree[2 * i + 2]);
 }

 vector<int> sorted;
 for (int i = 0; i < n; i++) {
 sorted.push_back(tree[0]); // 根节点为最小值
 // 定位最小值对应的叶子节点
 int idx = treeSize - 1;
 while (idx < 2 * treeSize - 1) {
 if (tree[2 * idx + 1] == tree[idx]) idx = 2 * idx + 1;
 else idx = 2 * idx + 2;
 }
 tree[idx] = INT_MAX; // 置为无穷大
 // 向上调整
 while (idx > 0) {
 idx = (idx - 1) / 2;
 tree[idx] = min(tree[2 * idx + 1], tree[2 * idx + 2]);
 }
 }
 arr = sorted;
}
代码讲解
1. 建树：扩展数组为2的幂次，构建完全二叉树，叶子节点存储原始数据。
1. 调整策略：选出最小值后，将其叶子节点置为INT_MAX，从该节点向上回溯，每层重新比较子节点值更新父节点。
1. 输出：重复n次，每次根节点即为当前最小值。
1. 复杂度：时间O(n log n)，空间O(n)（需额外存储树结构）。

基数排序
代码实现（C++）
#include <vector>
#include <algorithm>
#include <cmath>
using namespace std;

void radixSort(vector<int>& arr) {
 if (arr.empty()) return;

 // 找最大值确定位数
 int maxVal = *max_element(arr.begin(), arr.end());
 int maxDigits = log10(maxVal) + 1;

 vector<vector<int>> buckets(10); // 10个桶
 for (int exp = 1; maxDigits > 0; exp *= 10, maxDigits--) {
 // 清空桶
 for (auto& bucket : buckets) bucket.clear();

 // 按当前位分配
 for (int num : arr) {
 int digit = (num / exp) % 10;
 buckets[digit].push_back(num);
 }

 // 按桶顺序收集
 int index = 0;
 for (int i = 0; i < 10; i++) {
 for (int num : buckets[i]) {
 arr[index++] = num;
 }
 }
 }
}
代码讲解
1. 位数计算：通过log10确定最大位数。
1. 分配：对每一位，计算数字在该位的值（0-9），分配到对应桶。
1. 收集：按桶0到9顺序，将元素放回原数组。
1. 复杂度：时间O(d·(n+k))（d为位数，k=10），空间O(n+k)。适用于整数，位数少时高效。

外部排序
思想
处理无法装入内存的大数据量，分两阶段：
1. 生成初始归并段：分块读入内存，内部排序后写回外存。
1. 多路归并：将多个有序归并段合并为一个有序文件。
原理
1. 生成归并段：
· 读取内存大小的块（如1MB），用内部排序（如快速排序）使其有序。
· 写回外存，形成多个初始归并段。
1. k路归并：
· 用最小堆维护k个归并段的当前元素（堆大小=k）。
· 每次取堆顶（最小值）写入输出，从对应归并段读取下一个元素入堆。
· 重复直到所有归并段耗尽。
手算过程（内存限3记录，序列：5,2,8,3,1,9,4,7,6）
阶段1：生成归并段
 块1: [5,2,8] → 排序 → [2,5,8] → 归并段1
 块2: [3,1,9] → 排序 → [1,3,9] → 归并段2
 块3: [4,7,6] → 排序 → [4,6,7] → 归并段3

阶段2：3路归并
 初始化堆：取各段首元素 {2,1,4} → 堆顶=1（来自段2）
 输出1，段2读入3 → 堆={2,3,4} → 堆顶=2（段1）
 输出2，段1读入5 → 堆={3,5,4} → 堆顶=3（段2）
 ... 重复直至结束
最终序列：1,2,3,4,5,6,7,8,9
代码实现（C++框架）
#include <fstream>
#include <queue>
#include <vector>
using namespace std;

// 生成初始归并段
void generateRuns(const string& inputFile, int memorySize) {
 ifstream in(inputFile);
 int runId = 0;
 vector<int> buffer;

 while (!in.eof()) {
 buffer.clear();
 // 读取一块数据
 for (int i = 0; i < memorySize && in >> num; i++) {
 buffer.push_back(num);
 }
 sort(buffer.begin(), buffer.end()); // 内部排序
 // 写入归并段文件
 ofstream out("run_" + to_string(runId++) + ".txt");
 for (int num : buffer) out << num << " ";
 }
}

// k路归并
void mergeRuns(int runCount, const string& outputFile) {
 vector<ifstream*> streams;
 priority_queue<pair<int, int>, vector<pair<int, int>>, greater<>> minHeap;

 // 打开所有归并段，初始化堆
 for (int i = 0; i < runCount; i++) {
 streams.push_back(new ifstream("run_" + to_string(i) + ".txt"));
 int num;
 if (*streams[i] >> num) {
 minHeap.push({num, i}); // (值, 段ID)
 }
 }

 ofstream out(outputFile);
 while (!minHeap.empty()) {
 auto [val, idx] = minHeap.top(); minHeap.pop();
 out << val << " ";
 // 从该归并段读取下一个值
 int nextVal;
 if (*streams[idx] >> nextVal) {
 minHeap.push({nextVal, idx});
 }
 }

 // 清理
 for (auto* s : streams) { s->close(); delete s; }
}
代码讲解
1. 生成归并段：
· 按内存大小分块读取，内部排序后写入独立文件。
1. k路归并：
· 最小堆：存储对(当前值, 归并段ID)，堆顶为全局最小值。
· 输出与补充：输出堆顶后，从对应归并段读取新值入堆。
1. 优化：实际应用中使用败者树减少比较次数，或置换选择生成更长归并段。
1. 复杂度：I/O次数为O(n log_k n)，k为归并路数。

	操作
	核心步骤
	时间复杂度
	空间特点

	初始化
	栈顶指针置NULL
	O(1)
	无预分配空间

	入栈
	头插法创建新结点
	O(1)
	动态分配，无栈满限制

	出栈
	释放栈顶结点并更新指针
	O(1)
	需手动释放内存

	操作
	核心步骤
	队空条件
	队满条件
	时间复杂度

	初始化
	创建头节点，front/rear指向头节点
	front == rear
	无
	O(1)

	入队
	尾部添加结点，更新rear指针
	-
	无（动态扩展）
	O(1)

	出队
	删除首数据结点，更新front指针
	front == rear
	-
	O(1)

	指标
	邻接矩阵
	邻接表

	无向图度计算
	O(n²) 时间
	O(n+e) 时间

	有向图入度
	必须扫描整列 O(n²)
	全局扫描 O(n+e)

	空间效率
	固定 O(n²) 空间
	稀疏图 O(n+e) 空间优势显著

	最佳适用场景
	稠密图（e > n log n）
	稀疏图（e < n log n）

	动态操作
	边修改 O(1)
	边删除需 O(e/n) 平均时间

	特性
	Prim算法
	Kruskal算法
	Dijkstra算法

	主要用途
	无向图MST
	无向图MST
	单源最短路径

	适用图类型
	无向连通图
	无向连通图
	有向/无向图(边权≥0)

	时间复杂度
	O(n²)（邻接矩阵）
	O(e log e)
	O(n²)（邻接矩阵）

	空间复杂度
	O(n²)
	O(e)
	O(n²)

	最佳场景
	稠密图
	稀疏图
	边权非负的最短路径

	核心数据结构
	优先队列/数组
	并查集+排序
	优先队列/数组

	步骤
	low
	high
	mid
	比较结果
	新区间

	1
	1
	5
	3
	38 > L[3]=25
	[4, 5]

	2
	4
	5
	4
	38 < L[4]=45
	[4, 3]

	3
	4
	3
	-
	low > high
	失败

	情况
	处理方式

	叶子节点
	直接释放内存

	仅有一个子树
	子树根替代被删节点

	有两个子树
	用中序前驱（左子树最大值）替换值，再递归删除前驱

